Let 'R Buck Racing Steering Team

Presented by:

Abdul Alshekh

Robert Capron

Sheldon Evans

Objectives

Design Considerations

- Eliminate bump steer
- Reduce turning radius
- Eliminate Ackerman angle
- Relocate rack and pinion

- Placement of rack and pinion
- Actuator rod/spindle assembly
- Geometry of tie rods
- Strength of materials (failure)

Avoiding bump steer

- Design the tie rod and the A-arm to rotate about the same axis on the same plane of action.
- Concentric arcs demonstrate the path of the two pivot points of equal distance.

Bump steer improvement from last year

• The change in distance between the two arcs indicates bump steer. Left:2015 baja. Right:2016 baja

Turning Radius

• Objectives:

Reduce turning radius to the smallest sweep a vehicle can pivot.

- Achievements:
 - Reduced turning radius from 15 feet to 7.5 feet.
 - Can use a cutting break to achieve a turning radius of 7.2 feet.

Turning Radius

Goal R =7.5 ft			
	δ_{i} (Inner	δ_{o} Outer	R
Ackerman angle	49.9°	29.9°	10.8ft
Without Ackerman angle	50°	50°	7.5ft
Cutting break	N/A	N/A	~7.2ft

Parallel steering

Increase Cockpit Space

- Keep the cockpit free for driver
 - Comfort, safety, and performance
- Relocation of Rack and pinion
- Ideas
 - Move rack and pinion above the driver's feet
 - Move rack and pinion in front of driver's feet
 - Lower rack and pinion
- Final Decision
 - Lowered and relocated rack and pinion

Actuator rod/spindle assembly

- Avoid buckling
- Not cause Ackerman angle
- Produce a smooth parallel turning system

Tie Rods Robustness

Yield of aluminum connector rods

• Axial load, P_{cr}, of 280 Lbs.

Yield of steel tubing connector rods

- Axial load, P_{cr}, of 490 Lbs.
- Robust design while not compromising weight.

Budget and Cost

- We planned on a \$500 budget
- Actual costs for modifications were much less

Actual Cost		
Component:	Price:	
U-Joints	\$151.78	
Tie-rod Tubing	\$72	
Total	\$223.78	

Conclusion

Objectives

- Eliminate bump steer
- Reduce turning radius
- Eliminate Ackerman angle
- Relocate rack and pinion

Final Results

- Minimal bump steer
- Reduced from 15' to 7.5'
- Minimal Ackerman angle, less than 2 degrees of Ackerman
- Lowered the rack and pinion by 1.5" and relocated it 4" forward for optimal space

Questions??

