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S U M M A R Y
In seismic waveform analysis and inversion, data functionals can be used to quantify the
misfit between observed and model-predicted (synthetic) seismograms. The generalized seis-
mological data functionals (GSDF) of Gee & Jordan quantify waveform differences using
frequency-dependent phase-delay times and amplitude-reduction times measured on time-
localized arrivals and have been successfully applied to tomographic inversions at different
geographic scales as well as to inversions for earthquake source parameters. The seismogram
perturbation kernel is defined as the Fréchet kernel of the data functional with respect to the
seismic waveform from which the data functional is derived. The data sensitivity kernel, which
is the Fréchet kernel of the data functional with respect to structural model parameters, can
be obtained by composing the seismogram perturbation kernel with the Born kernel through
the chain rule. In this paper, we extend GSDF analysis to broad-band waveforms by removing
constraints on two control parameters defined in Gee & Jordan and derive the seismogram
perturbation kernels for the modified GSDF analysis. The modifications given in this paper
are consistent with the original GSDF theory in Gee & Jordan around the centre frequency
and improve the stability of GSDF analysis towards the edges of the passband. We also present
numerical examples of perturbation kernels for the modified GSDF analysis and their data sen-
sitivity kernels using a homogenous half-space structure model and a complex 3-D structure
model.

Key words: Time series analysis; Inverse theory; Seismic tomography; Computational
seismology.

1 I N T RO D U C T I O N

Advances in parallel computing technology and numerical methods
have made large-scale, 3-D numerical simulations of seismic wave-
fields much more affordable and they open up the possibility of ‘full
3-D tomography’ (F3DT), in which the starting model as well as the
derived model perturbation is 3-D in space and the Fréchet kernel is
computed using the full physics of 3-D wave propagation. Two phys-
ically equivalent but computationally distinct approaches to F3DT
(Chen et al. 2007a) have been developed, the scattering-integral (SI)
method, which sets up the inverse problem by calculating and stor-
ing the Fréchet kernels for individual misfit measurements (Zhao
et al. 2005) and the adjoint-wavefield method, which constructs
the gradient of the objective function through correlating the for-
ward wavefield from the source and the adjoint-wavefield from the
receivers (Tarantola 1986; Tromp et al. 2005). The first success-
ful application of F3DT using real data from natural earthquakes
was conducted in Chen et al. (2007b) to improve the 3-D crustal
structure in the Los Angeles Basin region using the SI method. Re-
cently, Tape et al. (2009) has adapted the adjoint-wavefield method

to image the crustal structure in Southern California using wave-
form data from local earthquakes and Fichtner et al. (2009) has
adapted the adjoint-wavefield method to continental-scale tomog-
raphy and inverted for upper-mantle structure in the Australasian
region. In these successful F3DT applications, time- and frequency-
dependent phase and amplitude anomalies were used to quantify the
misfit between synthetic and observed seismograms.

A data functional is a map that assigns each member of a cer-
tain class of earth models a single observable number that can be
extracted from the seismograms. Given an earth model, we can com-
pute synthetic seismograms by solving the seismic wave equation
and the discrepancies between the synthetic seismogram and the
corresponding observed seismogram could be quantified using data
functionals. Examples of data functionals include the differential
travel-time measured by maximizing the cross-correlation between
the observed and synthetic waveforms (Woodward & Masters 1991)
and the time- and frequency-localized phase-delay and amplitude
anomalies (Thomason 1982; Gee & Jordan 1992; Laske & Masters
1996; Ekström et al. 1997; Holschneider et al. 2005; Kristekova
et al. 2006; Fichtner et al. 2008; Fichtner et al. 2009; Kristekova
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et al. 2009). The Fréchet kernel of a data functional with respect
to structural parameters can be obtained by composing the Born
kernel (Dahlen & Tromp 1998), which provides the Fréchet ker-
nel of the waveform with respect to structural parameters and the
seismogram perturbation kernel, which is the Fréchet kernel of the
data functional with respect to the waveform (Chen et al. 2007a),
through the chain rule (Milne 1980, p. 293).

The generalized seismological data functionals (GSDF) of Gee
& Jordan (1992) quantify waveform differences using frequency-
dependent phase-delay times and amplitude-reduction times mea-
sured on time-localized arrivals. 1- and 2-D data sensitivity kernels
for GSDF measurements were derived in Gee & Jordan (1992),
Zhao & Jordan (1998) and applied in several tomographic inver-
sions (e.g. Gaherty et al. 1996; Katzman et al. 1998). 3-D data
sensitivity kernels for GSDF phase-delay measurements were first
presented in Zhao et al. (2000) for a 1-D starting model by ex-
pressing the Born kernel as a coupled-mode summation and later
applied to investigate 3-D seismic structure of the mantle beneath
western Pacific (Chen et al. 2002). In this paper, we extend GSDF
analysis to broad-band waveforms by removing constraints on two
control parameters defined in Gee & Jordan (1992): the pre-filtering
parameter ξ0 and the frequency-shift parameter ξ3. We also derive
the perturbation kernels for the modified GSDF analysis and give
a noise model for the GSDF measurements based on the derived
perturbation kernels. In our formulation and through numerical ex-
amples, we show that the modifications introduced in this paper are
consistent with the original GSDF theory in Gee & Jordan (1992)
around the centre of the frequency band and improve the stability of
GSDF analysis towards the edges of the passband. The formulation
given in this paper has been successfully applied in the F3DT for
the Los Angeles Basin region in Chen et al. (2007b).

2 S E I S M O G R A M P E RT U R B AT I O N
K E R N E L

Seismogram perturbation kernels are defined as the Fréchet kernels
of data functionals with respect to the seismic waveforms from
which the data functionals are derived. We presume the seismogram
observed on the i-th component of the r-th receiver from the s-
th seismic source can be approximated by an instrument-filtered
displacement ūs

i (xr , t). For each seismogram, we consider a finite
set of data functionals dsr

in , indexed by n, that measure the misfit
between ūs

i (xr , t) and the instrument-filtered displacement us
i (xr , t)

synthesized from the starting earth model m0:

dsr
in = Dn

[
us

i (xr , t), ūs
i (xr , t)

]
. (1)

The measurement process, denoted as Dn in eq. (1), gener-
ally involves non-linear operations on both the observed and
synthetic seismograms. We assume it is constructed to satisfy
Dn[us

i (xr , t), us
i (xr , t)] = 0. Because the data functionals are

seismogram-specific, the Fréchet derivatives with respect to dis-
placement can be expressed in terms of space-independent kernels,

δdsr
in =

∫
dt J sr

in (t)δus
i (xr , t), (2)

where δus
i (xr , t) is the displacement perturbation. The exact Fréchet

kernel of the displacement with respect to structural parameters is
provided by the first-order Born approximation (Dahlen & Tromp
1998; Zhao et al. 2000). The Fréchet derivative of the measurement
operator Dn with respect to displacement is a linear integration
operator with an integration kernel given by J sr

in (t) and maps a per-
turbation in the displacement to a perturbation in the data functional.

The integration kernel J sr
in (t), which accounts for the effects of mea-

surement operator on the target waveform as well as any instrument
filtering, is what we call the seismogram perturbation kernel. Ex-
amples of seismogram perturbation kernels of some widely used
data functionals are given in Chen et al. (2007a).

3 G E N E R A L I Z E D S E I S M O L O G I C A L
DATA F U N C T I O NA L S

The GSDF method (Gee & Jordan 1992) provides a unified frame-
work for the analysis and inversion of broad-band waveform
data. In the frequency domain, we can map the synthetic wave-
form us

i (xr , ω) into the observed waveform ūs
i (xr , ω) using two

frequency-dependent, time-like quantities δτp(xr , ω) and δτq(xr , ω).

ūs
i (xr , ω) = us

i (xr , ω) exp{iω[δτp(xr , ω) + iδτq(xr , ω)]}. (3)

In GSDF analysis, we estimate δτp,q(xr , ω) by measuring frequency-
dependent phase-delay time δtp(ωi ) and amplitude-reduction time
δtq(ωi ) at a set of discrete frequencies of interest ωi .

The GSDF data processing consists of several steps (Fig. 1). We
isolate the target wave group using an isolation filter f̃ (t), which
is obtained by windowing the complete synthetic seismogram. We
then cross-correlate the isolation filter with the complete synthetic
seismogram and with the observed seismogram and we window the
resulting synthetic and data cross-correlagrams around the zero-
lag. The windowed correlagrams are then narrowband filtered at a
set of frequencies ωi . When certain conditions about windowing
and narrowband filtering are enforced (Gee & Jordan 1992), the
resulting narrowband-filtered windowed correlagrams can always
be well matched by five-parameter Gaussian wavelets, which are
cosine functions with frequencies at around ωi and modulated by
Gaussian envelopes. The differences in the phase and the amplitude
between the synthetic and data Gaussian wavelets give us the phase-
delay time δtp and amplitude-reduction time δtq at each narrowband-
filtering frequency ωi . A practical issue of the GSDF analysis is that
the phase-delay measurements need to be corrected for possible
cycle-skipping errors before they can be used in inversions. These
cycle-skipping errors can usually be corrected by bootstrapping the
phase from low frequencies to high frequencies (Ekström et al.
1997).

In traditional broad-band cross-correlation analysis, the travel-
time shift �T of an isolated waveform is estimated using the loca-
tion of the cross-correlagram peak (Luo & Shuster 1991; Woodward
& Masters 1991; Dahlen et al. 2000; Zhao et al. 2000) and the ampli-
tude anomaly can be determined from the maximum amplitudes of
the cross-correlagrams (Dahlen & Baig 2002; Ritsema et al. 2002).
For band-limited signals, these measurements provide good esti-
mates around the dominant frequency but they do not characterize
the differences in the shape of the waveforms. In the GSDF analysis,
we can account for differences in waveform shapes by making mea-
surements at several frequencies across the frequency bandwidth.
In Fig. 2, we illustrate this point using an example. By correcting
the phase and amplitude of the synthetic waveform using the GSDF
measurements made at five frequencies evenly distributed over the
frequency band, we were able to recover the observed waveform
almost perfectly.

The GSDF measurements are well suited for tomographic inver-
sions. In particular, their linearization depends on the Rytov approx-
imation, which is valid for large phase-shifts as long as the phase
perturbation per wavelength is small (Chernov 1960; Snieder &
Lomax 1996). This is far less restrictive than the Born approxima-
tion, which requires small phase-shifts.
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Figure 1. An example of GSDF processing. (a) The observed seismogram (DAT), synthetic seismogram (SYN) and the isolation filter (ISF) for the S-wave
waveform we are analysing. (b) Cross-correlagram between the isolation filter and the observed seismogram (upper panel) and cross-correlagram between the
isolation filter and the complete synthetic seismogram (lower panel). Windowed cross-correlagrams are shown as dashed lines. (c) Examples of narrowband-
filtered windowed cross-correlagrams for the data (upper panel) and the synthetic (lower panel). Centre frequency of the narrowband filter is 0.6 Hz; half-width
is 0.1 Hz. (d) GSDF measurements made at five sampling frequencies. Triangles, amplitude-reduction times; stars, phase-delay times before correcting for
cycle-skipping errors; circles, phase-delay times after correcting for cycle-skipping errors.

4 S E I S M O G R A M P E RT U R B AT I O N
K E R N E L S O F G S D F M E A S U R E M E N T S

We denote the target wave group on the observed instrument-filtered
displacement as f (t). The isolation filter f̃ (t), is synthesized to
model the target displacement as well as any instrument filtering.
The autocorrelation of the isolation filter, which is an even function
of time and the cross-correlation between the isolation filter and the
target wave group f (t) can be expanded as summations of N cosine
functions of different amplitudes, frequencies and phase shifts:

C̃ f f (t) = f̃ (t) ⊗ f̃ (t) =
N∑

n=1

Ãn cos
[
ωn

(
t + τ̃ n

p

)]
, (4)

C f f (t) = f̃ (t) ⊗ f (t) =
N∑

n=1

An cos
[
ωn

(
t + τ n

p

)]
. (5)

4.1 Filtered, windowed correlagrams

Following Gee & Jordan (1992), we first apply a Gaussian time
window of the form

W (t) = exp

[
−σ 2

w

2
(t − tc)

2

]
, (6)

onto both correlagrams to reduce the contributions of interfering
wave groups to the observations. For the symmetric autocorrela-
tion in eq. (4), we set tc = 0. In general the cross-correlation

in eq. (5) is not symmetric and to minimize the signal distortion
by windowing we usually centre the time window at the peak of
the cross-correlagram. The windowed correlagrams are denoted as
WC̃ f f and WC f f .

The next operation is the narrowband filtering which localizes
the windowed correlagrams in the frequency domain. We consider
Gaussian narrowband filter of the form:

Fi (ω) = exp

[−(ω − ωi )2

2σ 2
i

]
+ exp

[−(ω + ωi )2

2σ 2
i

]
, (7)

where the index i specifies a filter Fi with half-bandwidth σi and cen-
tre frequency ωi . After some algebraic manipulation (Chen 2005),
we obtain the windowed and narrowband filtered correlagrams in
time domain:

Fi WC̃ f f (t) = exp

[
− (σ ′

i t)2

2

]
×

∑
n

{
Ã′

n cos
[
ω′

n

(
t + τ̃ ′n

p

)] + Ã′′
n cos

[
ω′′

n

(
t + τ̃ ′′n

p

)]}
, (8)

Fi WC f f (t) = exp

[
− (σ ′

i )
2
(t−tc)2

2

]
×

∑
n

{
A′

n cos
[
ω′

n

(
t + τ ′n

p

)] + A′′
n cos

[
ω′′

n

(
t + τ ′′n

p

)]}
. (9)
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Figure 2. An example of fitting the synthetic waveform (dash lines) to the observed waveform (solid lines) by correcting the phase and amplitude of the
synthetic waveform using GSDF measurements of phase-delay (circles) and amplitude-reduction times (triangles). The observed and synthetic waveforms are
the same as in Fig. 1. (a) The original waveforms without perturbation. (b) and (c) correcting the synthetic waveform using GSDF measurements made at one
sampling frequency 0.6 Hz. (d) and (e) correcting synthetic waveform using GSDF measurements made at three sampling frequencies, 0.4, 0.6 and 0.8 Hz. (f)
and (g) correcting the synthetic waveform using GSDF measurements made at five sampling frequencies 0.2, 0.4, 0.6, 0.8 and 1.0 Hz. Cubic splines are used
to interpolate and extrapolate phase and amplitude perturbations to all other frequencies. This example demonstrates that minimizing the frequency-dependent
GSDF measurements is equivalent to fitting the waveforms.

Here,

σ ′
i =

√
σ 2

i σ 2
w

σ 2
i + σ 2

w

, (10)

ω′
n = σ 2

i ωn + σ 2
wωi

σ 2
i + σ 2

w

, (11)

ω′′
n = σ 2

i ωn − σ 2
wωi

σ 2
i + σ 2

w

, (12)

Ã′
n = Ãn

σ ′
i

σw

exp

[
− (ωn − ωi )

2

2
(
σ 2

i + σ 2
w

)]
,

A′
n = An

σ ′
i

σw

exp

[
− (ωn − ωi )

2

2
(
σ 2

i + σ 2
w

)]
, (13)

Ã′′
n = Ãn

σ ′
i

σw

exp

[
− (ωn + ωi )

2

2
(
σ 2

i + σ 2
w

)]
,

A
′′
n = An

σ ′
i

σw

exp

[
− (ωn + ωi )

2

2
(
σ 2

i + σ 2
w

)]
, (14)

τ̃
′n
p = ωn

ω′
n

τ̃ n
p , τ ′n

p = ωn

ω′
n

τ n
p + ωn − ω′

n

ω′
n

tc, (15)

τ̃
′′n
p = ωn

ω′′
n

τ̃ n
p , τ ′′n

p = ωn

ω′′
n

τp + ωn − ω′′
n

ω′′
n

tc. (16)

The right-hand-sides of eqs (8) and (9) are summations of Gaussian
wavelets weighted according to their frequencies. We note that eqs
(8)–(16) are exact and no approximations were involved in the
derivation. To verify these equations, we give a numerical exam-
ple. In eq. (4), we specify Ãn = (2π/σ̃c) exp[−(ωn − ω̃c)2/(2σ̃ 2

c )],
where ω̃c = 1.0 × 2π and σ̃c = 0.25 × 2π . Fig. 3 shows Ãn , as
a function of ωn and its corresponding C̃ f f (t). For the window-
ing and narrowband filtering parameters, we choose σw = 0.2,
ωi = 1.5 × 2π and σi = 0.1 × 2π . In Fig. 4 we compare the
Fi WC̃ f f (t) obtained from the summation on the right-hand-side
of eq. (8) with the one obtained by applying the time window and
the narrowband filter onto C̃ f f (t) numerically, they are identical
up to machine precision. The same experiments were repeated for
different types of Ãn as well as different values of the windowing
and filtering parameters and they all confirm the correctness of eqs
(8)–(16).

We can evaluate the amplitude Ã, the centre frequency ω̃1 and
the half-bandwidth σ̃1 of the windowed and narrowband filtered
autocorrelation from the Fourier transform of Fi WC̃ f f (t),

Ã =
∑

n

(
Ã′

n + Ã′′
n

)
, (17)

ω̃1 =
∑

n

(
Ã′

nω′
n + Ã′′

nω′′
n

)
/ Ã, (18)
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Figure 3. An example of Ãn as a function of ωn (upper panel) and its time-domain waveform C̃ f f (t). The expression of Ãn is Gaussian with centre frequency
1.0 Hz and half-width 0.25 Hz (see text).

σ̃ 2
1 = (σ ′

i )
2 +

∑
n

[
A′

n(ω′
n − ω̃1)

2 + Ã′′
n(ω′′

n − ω̃1)
2
]
/ Ã. (19)

And we can expand the filtered, windowed auto-correlagram, eq. (8),
into a canonical Gram-Charlier series (Jackson 1961; Rietz 1971;
Gee & Jordan 1992),

Fi WC̃ f f (t) = Ã exp

(
− σ̃ 2

1 t2

2

)
[
cos(ω̃1t) + a3 (σ̃1t)

3 sin (ω̃1t) + a4(σ̃1t)
4 cos (ω̃1t) − · · ·] .

(20)

The coefficients ak in eq. (20) may be written in terms of normal-
ized, one-sided moments of Fi WC̃ f f (ω) about the centre frequency
ω̃1. The expressions for ak are given in Rietz (1971) and Gee &
Jordan (1992) (eqs 17–18). The leading term in eq. (20) is a Gaus-
sian wavelet with a carrier frequency ω̃1 and an envelope half-width
equal to the inverse of σ̃1. In practice, we usually apply a Tukey (i.e.
cosine-tapered) time window, which has a flat part in the middle,
instead of a Gaussian time window. The effect is that the autocorre-
lation of the isolation filter C̃ f f (t) is as less distorted by windowing
as possible, although the extraneous phases are excluded from the
time window. In this case, the effective bandwidth of the time win-
dow is close to zero, σw → 0. For the special case, where Ãn is a
constant, Ãn = Ã and σi /ωi � 1, we have ω̃1 = ωi , σ̃1 = σi , the
filtered and windowed auto-correlagram becomes an exact Gaussian
wavelet,

Fi WC̃ f f (t) = Ã exp
(
σ̃ 2

1 t2/2
)

cos(ω̃1t) . (21)

In general, the third- and higher-order terms in eq. (20) are non-zero
but the leading term in eq. (20) still provides a good approxima-
tion to the filtered and windowed auto-correlagram as long as the

variation of Ãn within the effective bandwidth is sufficiently small,

‖� Ã‖σ̃1 � 1, (22)

where ‖� Ã‖ can be defined as the total variation of Ãn within the
interval [ω̃1 − σ̃1,ω̃1 + σ̃1].

We note that different from Gee & Jordan (1992), in this deriva-
tion, the accuracy of the Gaussian-wavelet approximation provided
by the leading term in eq. (20) does not depend on the frequency-
shift parameter ξ3 as defined in eq. (32) in Gee & Jordan (1992)
(i.e. the position of the narrowband filter Fi relative to the centre
frequency of the windowed auto-correlagram WC̃ f f ) but depends
on the variation of Ãn within the bandwidth [ω̃1 − σ̃1,ω̃1 + σ̃1]. For
the special case where Ãn is Gaussian (e.g. Fig. 3a), the derivative
of Ãn with respect to frequency is zero at centre frequency ω̃c and
reach maximum at about ω̃c + σ̃c, therefore the accuracy of the
approximation provided by the leading term is higher at ω̃c than at
ω̃c + σ̃c (Fig. 5). One implication of this derivation is that a good
approximation can always be enforced by selecting a sufficiently
small σi so that eq. (22) is satisfied. In Fig. 5, we compare the
Fi WC̃ f f computed using the right-hand-side of eq. (8) with the
one provided by the leading term in eq. (20). The approximation is
more accurate when the narrowband filter Fi is centred near the
centre frequency ω̃c, where the total variation ‖� Ã‖ is smaller and
the accuracy improves as the bandwidth of Fi reduces.

In actual computation, the parameters of the Gaussian wavelet are
not obtained from the theoretical values given in eqs (17)–(19). In-
stead, they are estimated numerically by minimizing a χ 2 quadratic
form as defined in eq. (7) of Gee & Jordan (1992) using a least-
squares procedure. The deviations of the numerically estimated val-
ues from the theoretical ones are due to contributions from higher-
order terms in eq. (20) and are negligible when eq. (22) is satisfied.
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Figure 4. Comparison between the Fi WC̃ f f (t) obtained from the right-hand-side of eq. (8) (thick dash line in upper panel) and the one obtained numerically
by applying the time window and the narrowband filter onto C̃ f f (t) (thin solid line in upper panel). The time window has a half-bandwidth σw = 0.2 and the
narrowband filter has a centre frequency of 1.5 Hz and half-bandwidth 0.1 Hz. Lower panel shows the difference between the thick dash line and the thin solid
line in the upper panel. The function C̃ f f (t) is plotted in the lower panel of Fig. 3.

We can express the composite Gaussian wavelets for the filtered,
windowed correlagrams as

Fi WC̃ f f (t) ≈ g̃(t) = Ã exp

[
− σ̃ 2

s (t − t̃g)2

2

]
cos

[
ω̃s(t − t̃p)

]
,

(23)

Fi WC f f (t) ≈ g(t) = A exp

[
−σ 2

s (t − tg)2

2

]
cos

[
ωs(t − tp)

]
.

(24)

And the GSDF measurements of phase-delay time and amplitude-
reduction time associated with filter Fi are defined as (Gee & Jordan
1992)

δtp = tp − t̃p, (25)

δtq = − ln(A/ Ã)

ω̃s
. (26)

4.2 Perturbation formulae

The functionals that can be directly related to perturbations of struc-
tural parameters are perturbations of the phase-shifts and amplitudes
introduced in eqs (4) and (5),

δτ n
p = τ n

p − τ̃ n
p , (27)

δτ n
q = − ln(An/ Ãn)

ωn
. (28)

The observables, δtp,q, which are our GSDFs, can be related back
to δτ n

p,q by applying the perturbation formulae, eqs (84) and (85)
in Gee & Jordan (1992). We first define four parameters following
eqs (73) and (74) in Gee & Jordan (1992)

B ′
n = Ã′

n

Ã
exp

[
− (

σ ′
i t̃g

)2

2

]
, ϕ′

n = (
ω′

n τ̃ ′n
p − ω̃s t̃p

) + (ω̃s − ω′
n)t̃g,

B ′′
n = Ã′′

n

Ã
exp

[
− (

σ ′
i t̃g

)2

2

]
, ϕ′′

n = (
ω′′

n τ̃ ′′n
p − ω̃s t̃p

) + (ω̃s − ω′′
n )t̃g.
(29)

For the auto-correlagram, we have τ̃ n
p = τ̃ ′n

p = τ̃ ′′n
p = 0, thus we

have t̃p = t̃g = 0 and the four parameters become

B ′
n = Ã′

n

Ã
, B ′′

n = Ã′′
n

Ã
, ϕ′

n = ϕ′′
n = 0. (30)

Following eqs (75) and (76) in Gee & Jordan (1992), we define two
1 × 2N dimensionless vectors C and S with their elements given by

C = [B ′
n cos(ϕ′

n), B ′′
n cos(ϕ′′

n )], (31)

S = [B ′
n sin(ϕ′

n), B ′′
n sin(ϕ′′

n )]. (32)

Following eqs (84) and (85) in Gee & Jordan (1992), the observ-
ables, δtp,q, can then be expressed as

δtp = Cδtp − Sδtq, (33)

δtq = Cδtq + Sδtp, (34)
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Perturbation kernels for GSDF 875

Figure 5. Comparison between the Fi WC̃ f f (t) provided by the leading term of eq. (20) (thick dash lines in panels a, b, e and f) and those obtained from the
right-hand-side of eq. (8) (thin solid lines in panels a, b, e and f). Panels c, d, g and h show the differences between the thick dash line and the thin solid line
in panels a, b, e and f. For panels a, b, c and d, the narrowband filter Fi has a half-width of 0.2 Hz. For panels e, f, g and h, Fi has a half-width of 0.1 Hz. For
panels a, c, e and g, Fi has a centre frequency of 1.0 Hz. For panels b, d, f and h, Fi has a centre frequency of 1.5 Hz. The total variance ‖� Ã‖ is 0.0236 for
panels a and c and 0.0897 for panels b and d. The centre frequency of Fi WC̃ f f (t), ω̃1/(2π), is 1.0 Hz for panels a, c, e and g, 1.31 Hz for panels b, d and
1.43 Hz for panels f, h. The effective bandwidth, σ̃1/(2π), is 0.16 Hz for panels a, b, c and d, 0.093 Hz for panels e, f, g and h. This figure demonstrates that the
approximation provided by the leading term of eq. (20) has higher accuracy, where ‖� Ã‖ is smaller and the approximation error can be reduced by reducing
the bandwidth of the narrowband filter Fi.
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876 P. Chen, T. H. Jordan and E.-J. Lee

where δtp,q are two 2N × 1 vectors with their elements given by

δtp = [
τ ′n

p − τ̃ ′n
p ; τ ′′n

p − τ̃ ′′n
p

]
=

[
ωn

ω′
n

δτ n
p + ωn − ω′

n

ω′
n

tc;
ωn

ω′′
n

δτ n
p + ωn − ω′′

n

ω′′
n

tc

]
, (35)

δtq =
[− ln(A′

n/ Ã′
n)

ω′
n

;
− ln(A′′

n/ Ã′′
n)

|ω′′
n |

]
=

[
ωn

ω′
n

δτ n
q ;

ωn

|ω′′
n | δτ n

q

]
.

(36)

Considering eq. (30), we have S = 0 and the perturbation eqs (33)
and (34) are fully decoupled

δtp = Cδtp, (37)

δtq = Cδtq, (38)

and we can express the observables, δtp,q, using δτ n
p,q as

δtp = σ ′
i

Ãσw

∑
n

ωn Ãn

ω′
n

exp

[
− (ωn − ωi )

2

2
(
σ 2

w + σ 2
i

)](
δτ n

p + ωn − ω′
n

ωn
tc

)

+ σ ′
i

Ãσw

∑
n

ωn Ãn

ω′′
n

exp

[
− (ωn + ωi )

2

2
(
σ 2

w + σ 2
i

)](
δτ n

p + ωn − ω′′
n

ωn
tc

)
,

(39)

δtq = σ ′
i

Ãσw

∑
n

ωn Ãn

ω′
n

exp

[
− (ωn − ωi )

2

2
(
σ 2

w + σ 2
i

)]
δτ n

q

+ σ ′
i

Ãσw

∑
n

ωn Ãn

|ω′′
n | exp

[
− (ωn + ωi )

2

2
(
σ 2

w + σ 2
i

)]
δτ n

q . (40)

When σi � ωi , the second summations in eqs (39) and (40) become
negligible and in the limit σw → 0, we have

δtp,q = 1

Ã

∑
n

Ãn exp

[
− (ωn − ωi )

2

2σ 2
i

]
δτ n

p,q. (41)

The observables, δtp,q, can therefore be expressed as weighted sum-
mations of δτ n

p,q with the weights determined by the product of the

narrowband filter Fi and Ãn , which is the spectrum of the auto-
correlagram C̃ f f . Written in continuous form, we have

δtp,q = 1

Ã

∫
dω

{
C̃ f f (ω) exp

[
− (ω − ωi )

2

2σ 2
i

]
δτp,q(ω)

}
. (42)

We note that, different from eqs (57) and (59) in Gee &
Jordan (1992), the derivation given here is not based on a Tay-
lor expansion of the differential propagation operator [i.e. eq. (44)
in Gee & Jordan (1992)] about the centre frequency of the narrow-
band filtered, windowed auto-correlagram and eqs (39)–(42) hold
even when the frequency-shift parameter ξ3 as defined in eq. (32)
in Gee & Jordan (1992) is large. To demonstrate this difference,
let’s consider the special case where C̃ f f (ω) is Gaussian with centre
frequency ω̃c and half-width σ̃c

C̃ f f (ω) =
√

2π

σ̃c
exp

[
− (ω − ω̃c)

2

2σ̃ 2
c

]
. (43)

In this case, the weighting function in eq. (42) is also Gaussian and
has the form

V (ω) = 1

z
exp

[
− (ω − ωic)

2

2σ 2
ic

]
, (44)

where the centre frequency ωic and half-width σic are

σ 2
ic = (

σ −2
i + σ̃ −2

c

)−1
, (45)

ωic = σ̃ 2
c ωi + σ 2

i ω̃c

σ̃ 2
c + σ 2

i

(46)

and z is a normalization factor. We expand δτp,q(ω) in a Taylor series
about the centre frequency ωic

δτp,q(ω) = δτp,q(ωic) + (ω − ωic)δτ̇p,q(ωic)

+ 1

2
(ω − ωic)

2δτ̈p,q(ωic) + · · · (47)

and bring eq. (47) into eq. (42), we obtain

δtp,q = δτp,q(ωic) + σ 2
ic/2δτ̈p,q(ωic) + · · · (48)

In the limit σw → 0, the time-localization control parameter,
eq. (26) in Gee & Jordan (1992), ξ1 → 1 and the centre frequency
and half-width as defined in eqs (35) and (36) in Gee & Jordan
(1992), ω̃f → ωic, σ̃f → σic. In this case, eqs (57) and (59) in Gee
& Jordan (1992) become

δtp,q = δτp,q(ωic). (49)

Comparing eq. (49) with eq. (48), the first correction term is propor-
tional to δτ̈p,q(ωic). Eq. (49) is valid, while the effective bandwidth
σic is sufficiently small and the linear dispersion approximation is
adequate.

The derivation above is under the assumption that σw → 0. If we
assume the limit σi → 0 instead, then we have ω̃f → ωi , σ̃f → σi .
If we expand δτp,q(ω) in Taylor series about the frequency ω̃f ,

δτp,q(ω) = δτp,q(ω̃f ) + (ω − ω̃f )δτ̇p,q(ω̃f )

+ 1

2
(ω − ω̃f )

2δτ̈p,q(ω̃f ) + · · · , (50)

bring the expansions into the continuous forms of eqs (39) and (40),
ignore contributions from the second summations and assume that
ωn/ω′

n ≈ 1 within the effective bandwidth, we obtain

δtp = δτp(ω̃f ) − (
1 − ξ 2

1

) (
ω̃f − ω̃c

ω̃f

)
[δτg(ω̃f ) − tc]

+ ω̃2
f

(
1 − ξ 2

1

)
2

[
σ̃ 2

c

ω̃2
f

+ (
1 − ξ 2

1

)( ω̃f − ω̃c

ω̃f

)2
]

δτ̈p(ω̃f ) + · · · ,

(51)

δtq = δτq(ω̃f ) − (
1 − ξ 2

1

) (
ω̃f − ω̃c

ω̃f

)
δτa(ω̃f )

+ ω̃2
f

(
1 − ξ 2

1

)
2

[
σ̃ 2

c

ω̃2
f

+ (
1 − ξ 2

1

)( ω̃f − ω̃c

ω̃f

)2
]

δτ̈q(ω̃f ) + · · · .

(52)

In this case, the 0th- and 1st-order terms in eqs (51) and (52)
have recovered eqs (57) and (59) in Gee & Jordan (1992). The
1st- and higher-order correction terms become significant when the
fractional shift in centre frequency due to filtering (ω̃f − ω̃c)/ω̃f

becomes large or quadratic dispersion is significant.

4.3 Seismogram perturbation kernel

In frequency domain, the autocorrelation of the isolation filter can
be expressed as:

C̃ f f (ω) = f̃ ∗(ω) f̃ (ω) (53)
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Perturbation kernels for GSDF 877

and the observed waveform can be expressed as a perturbation from
the isolation filter as

f (ω) = f̃ (ω) + δ f (ω), (54)

where δ f (ω) is the instrument-filtered displacement perturbation,
that is, the frequency-domain displacement perturbation δus

i (xr , ω),
as used in eq. (2), multiplied with the instrument response. Thus the
cross-correlation C f f (ω) can be expressed as

C f f (ω) = f̃ ∗(ω) f (ω) = C̃ f f (ω) + f̃ ∗(ω)δ f (ω). (55)

Following eq. (44) in Gee & Jordan (1992), we define the differential
propagation operator

D(ω) = exp[iωδτp(ω) − ωδτq(ω)] (56)

and we have

C f f (ω) = D(ω)C̃ f f (ω). (57)

The exact Fréchet derivative of τp,q(ω) with respect to the waveform
f (ω) can therefore be obtained by first linearizing the differential
propagation operator

exp[iωδτp(ω) − ωδτq(ω)] = 1 + iωδτp(ω) − ωδτq(ω) + · · · (58)

and then considering eq. (55), we can obtain

δτp(ω) = 1

ω
Im

[
f̃ ∗(ω)

C̃ f f (ω)
δ f (ω)

]
, (59)

δτq(ω) = − 1

ω
Re

[
f̃ ∗(ω)

C̃ f f (ω)
δ f (ω)

]
. (60)

Bring eqs (59) and (60) into the continuous forms of eqs (39)–(42),
transform δ f into the time domain and define a function I (t) as

I (t) =
∫ +∞

−∞
dω exp(iωt)

{
H (ω)

σ ′
i

σw Ã
exp

[−(ω − ωi )2

2(σ 2
w + σ 2

i )

]
f̃ ∗(ω)

ω′

}

+
∫ +∞

−∞
dω exp(iωt)

{
H (ω)

σ ′
i

σw Ã
exp

[−(ω + ωi )2

2(σ 2
w + σ 2

i )

]
f̃ ∗(ω)

ω′′

}
,

(61)

where H (ω) is the Heaviside function and

ω′ = σ 2
i ω + σ 2

wωi

σ 2
w + σ 2

i

, ω′′ = σ 2
i ω − σ 2

wωi

σ 2
i + σ 2

w

, (62)

then the exact Fréchet derivatives of the observables, δtp,q, with
respect to the time-domain waveform f (t) can be expressed as

δtx =
∫

dt Jx(t)δ f (t), (x = p, q), (63)

where the seismogram perturbation kernel Jx(t) is given by

Jp(t) = Im [I (t)] , (64)

Jq(t) = −Re [I (t)] . (65)

Here we have adopted the temporal Fourier transform convention
defined in Aki & Richards (2002). When the effective bandwidth√

σ 2
w + σ 2

i � ωi , contribution from the second integral in eq. (64)

becomes negligible. And in the limit σw → 0, we have

I (t) = 1

Ã

∫ ∞

−∞
dω exp(iωt)

{
H (ω) exp

[−(ω − ωi )2

2σ 2
i

]
f̃ ∗(ω)

ω

}
.

(66)

In this case, the seismogram perturbation kernel is related to the
narrowband-filtered synthetic velocity at the receiver.

We note that the instrument response, as well as any pre-filtering
operators, in δ f (t) can also be absorbed by Jx(t), in which case
eq. (63) can be converted into a linear relation between δtx and the
time-domain displacement perturbation δus

i (xr , t) in the form of eq.
(2). We also note that in the adjoint-wavefield method for F3DT,
the adjoint source field (Tarantola 1986; Akcelik et al. 2003; Tromp
et al. 2005; Liu & Tromp 2006) is given by the time-reversed Jx(t)
weighted by its corresponding GSDF observable δtx and located at
its receiver location (Chen et al. 2007a). An example of Jx(t), as
well as its spectrum, is shown in Fig. 6. The width, as well as the
oscillatory character, of the corresponding data sensitivity kernels is
controlled by the effective bandwidth and the narrowband filtering
frequency ωi as demonstrated in Figs 7–9.

4.4 Noise model of the GSDF measurements

Let � f (t) = δ f (t) + n(t), where n(t) is a stationary noise process
with zero mean and autocovariance Vn(t) = Vn(−t):

〈n(t)〉 = 0, (67)

〈n(t)n(t ′)〉 = Vn(|t − t ′|), (68)

where 〈〉 denotes averaging through time t. The noise power spec-
trum is

Pn(ω) =
∫ ∞

−∞
Vn(t) exp(iωt)dt . (69)

Then we have

〈�tx〉 =
∫ ∞

−∞
Jx(t)〈� f (t)〉dt = δtx, (70)

〈
(�tx − δtx)

2〉 =
∫ ∞

−∞

∫ ∞

−∞
Jx(t)Jx(t

′)Vn(t − t ′)dtdt ′

= 1

π

∫ ∞

0
|Jx(ω)|2 Pn(ω)dω. (71)

In general, the statistical properties of the noise, in particular the
‘signal-generated’ noise due to inadequate modelling assumptions,
are not known. However, as demonstrated in Chen et al. (2007b),
simple noise models can be constructed based on sampling frequen-
cies ωi and the types of the wave groups used for making GSDF
measurements.

5 N U M E R I C A L E X A M P L E S

5.1 Fréchet kernels in a uniform half-space

Following Zhao et al. (2005), for our first numerical example, we use
a simple half-space model with a constant density ρ = 3000 kg/m3

and P-wave speed α = 6.5 km/s and S-wave speed β = 3.5 km/s.
The seismic source and the receiver are both buried at 24 km depth
and the source-receiver distance is 32.2 km. We use an explosive
source with the source-time function given by

s(t) = exp[−a(t − b/2)2]. (72)
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878 P. Chen, T. H. Jordan and E.-J. Lee

Figure 6. Seismogram perturbation kernels Jq(t) (left-hand column) and Jp(t) (right-hand column) for the isolation filter used in Fig. 8 at five different
narrowband filtering frequencies from 0.5 Hz to 2.5 Hz. The amplitude spectrums of Jq(t) at the five frequencies are shown in the middle column. The
amplitude spectrums of Jp(t) are similar to those of Jq(t).

Here we choose a = 60 and b = 0.65, resulting in synthetics with
maximum frequency of about 2 Hz. Fig. 7 shows the Fréchet ker-
nels for the frequency-dependent GSDF phase-delay and amplitude-
reduction times for the three arrivals on the radial component of the
buried receiver: the direct-arriving P wave, the free surface re-
flected pP and pS waves. In this uniform half-space model, the
P-wave ray path is the straight line that connects the source and
the receiver. The sensitivity for the P-wave is not concentrated on
the ray path but extends to as far as 8 km away from the ray path.
For the kernels of the frequency-dependent phase-delay times, we
also see the ‘banana-doughnut’ phenomena of vanishing sensitiv-
ity on the ray path (Marquering et al. 1999; Dahlen et al. 2000;
Hung et al. 2000; Zhao et al. 2000; Zhao et al. 2005). The width
of the kernel is generally controlled by the effective bandwidth of
the narrowband filtered, windowed auto-correlagram, σ̃s and the
width of the first Fresnel zone and the spatial oscillation of the
sensitivity depends on the frequency ω̃s. The sensitivity kernels for
the surface-reflected phases pP and pS have similar characteris-
tics as the direct-arriving P-wave. However, the width of the first
Fresnel zone for these surface-reflected phases is larger than the
direct-arriving P-wave due to longer propagation distances than the
P-wave.

5.2 Fréchet kernels for ambient-noise Green’s functions

Recently, there has been increased interest in using Green’s func-
tions extracted from ambient-noise recordings to estimate earth
structures. We would like to point out the possibility of applying
GSDF analysis on ambient-noise Green’s function data. In this sec-
tion, we give two numerical examples of Fréchet kernels of GSDFs

measured on ambient-noise Green’s functions using a uniform half-
space model and a complex 3-D structure model.

5.2.1 Background and motivation

Theoretical and experimental studies (e.g. Lobkis & Weaver 2001;
Weaver & Lobkis 2001, 2004; Snieder 2004; Wapenaar 2004;
Sánchez-Sesma & Campillo 2006; Sánchez-Sesma et al. 2006) have
shown that stacking cross-correlations of noise recordings at two
stations produces an estimate of the Green’s function of the material
recorded at one station as if an impulse excitation was acting on the
other station. For a dense seismic network, ambient seismic noise
data can take advantage of the density of the station coverage and
do not require earthquakes or active sources. So far, ambient-noise
Green’s function data have been used in a number of tomographic
studies in different areas to obtain group and/or phase velocity maps
at different periods (e.g. Shapiro et al. 2005; Gerstoft et al. 2006;
Yao et al. 2006; Brenguier et al. 2007; Cho et al. 2007; Lin et al.
2007; Yang et al. 2007; Bensen et al. 2008).

Ambient-noise Green’s function data can also provide an inde-
pendent way to estimate the quality of 3-D seismic structure models
(Ma et al. 2008). Recently, Ma et al. (2008) compared the observed
and synthetic ambient-noise Green’s functions between stations in
Southern California to evaluate two 3-D seismic velocity mod-
els, the Southern California Earthquake Center (SCEC) Commu-
nity Velocity Model Version 4.0 (CVM 4.0; Kohler et al. 2003;
Magistrale et al. 2000) and a model that integrates reflec-
tion/refraction data from the industry (Süss & Shaw 2003), CVM-H
5.2. The synthetic Green’s functions were computed using a finite-
element method (Ma & Liu 2006) with unit impulsive force acting
at a station location. The observed and synthetic Green’s functions
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Perturbation kernels for GSDF 879

Figure 7. Fréchet kernels for the direct-arriving P-wave (left-hand column), surface-reflected pP-wave (middle column) and pS-wave (right-hand column)
from an explosive source in a uniform half-space model. Plotted are the radial component of the synthetic seismogram, the isolation filters are highlighted in
red and the Fréchet kernels of GSDF δtp,q measurements at 0.5–2.0 Hz with respect to P-wave speed α in the source-receiver vertical plane and in the transverse
plane midway (dash line) between the source and the receiver. The source (grey star) and the receiver (grey triangle) are buried at 24 km depth and have a
distance of 32.2 km. In all the plots for the kernels, the colour schemes are such that white represents zero; warm colours (yellow to orange to red) represent
negative amplitudes indicating that a velocity increase leads to an advance in arrival time and an increase in amplitude; and cool colours (light to dark blue)
represent positive amplitudes indicating a velocity increase leads to a delay in arrival time and a reduction in amplitude.

were bandpass filtered between 0.1 and 0.2 Hz, which is the fre-
quency band that contains the dominant energy in the observed
ambient-noise Green’s functions (Ma et al. 2008). The results show
that the synthetic Green’s functions generated using CVM 4.0 have
higher waveform similarity with observed ambient-noise Green’s
functions, although those generated using CVM-H 5.2 provide bet-
ter fit to the observed surface-wave arrival-times (Ma et al. 2008).
Based on those evaluation results, both 3-D velocity models, CVM
4.0 and CVM-H 5.2, can be used as suitable starting models in F3DT.

5.2.2 F3DT using ambient-noise Green’s functions

To adapt F3DT to use ambient-noise Green’s function data, we
need to quantify the differences between synthetic and observed
Green’s functions and compute Fréchet kernels for the misfit mea-
surements. The synthetic Green’s functions for a station pair can be
generated by applying a unit impulsive force on one ‘source’ sta-

tion and recording the wavefield on the other ‘receiver’ station. We
can then apply the GSDF waveform analysis procedure to extract
frequency-dependent phase-delay times and amplitude-reduction
times to quantify waveform differences.

So far, both the adjoint-wavefield method (Tromp et al. 2005;
Liu & Tromp 2006) and the SI method (Zhao et al. 2005) have
been adopted to calculate full 3-D Fréchet kernels. In the adjoint-
wavefield method the time-reversed seismogram perturbation ker-
nels located at receivers and weighted by the misfit measurements
are used as the adjoint source field in adjoint simulations to con-
struct the gradients of the objective function (Liu & Tromp 2006;
Tape et al. 2007). In the SI method, the sensitivity kernels for in-
dividual misfit measurements are constructed by convolving the
receiver-side Green’s tensor, which is the wavefields generated by
the three orthogonal unit impulsive point forces acting at the re-
ceiver location, with the forward wavefield generated by the source
(Zhao et al. 2005) and then integrate against the seismogram
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880 P. Chen, T. H. Jordan and E.-J. Lee

Figure 8. Fréchet kernels for a Rayleigh wave from a vertical point impulsive force acting at station STA2 and recorded at station STA1. Both stations are
on the free surface. A uniform half-space structure model was used in the calculation. The vertical-component synthetic seismogram is shown in panel a, the
isolation filter is highlighted in red. Panels b and c show the seismogram perturbation kernels for the GSDF phase-delay time δtp at 1.0–2.5 Hz. Panels d and
e show the map-views of the Fréchet kernels at 1.0 km depth for δtp at 1.0 Hz (panel d) and 2.5 Hz (panel e) with respect to S-wave speed β. Panels f and g
show the cross-section views of the Fréchet kernels for phase-delay times with respect to β at the station–station vertical plane.

perturbation kernel. Following the notation in Chen et al. (2007b),
the sensitivity kernel of the GSDF measurements with respect to
the shear-wave speed can be expressed as:

K β

dsr
in

(x) = −2ρ(x)β(x)
∫

dt J sr
in (t)

∫
dτ

⎧⎨⎩2
∑

jl

[∂ j G(x, t − τ ; xr )

× ∂lu(x, τ )]−
∑

jk

(∂kG(x, t − τ ; xr )[∂ j u(x, τ ) + ∂ku(x, τ )])

⎫⎬⎭ ,

(73)

where the seismogram perturbation kernel J sr
in (t) is given in

eqs (61)–(65). To construct the sensitivity kernels for GSDFs mea-
sured on ambient-noise Green’s functions between a ‘receiver’ sta-
tions r1 and a ‘source’ station r2, in eq. (73) the receiver Green

tensor becomes

G(x, t ; xr ) = G(x,t ; xr1 ) (74)

and the forward wavefield from the source is

u(x, t) = G(x, t ; xr2 ) · ê, (75)

where ê is a polarization vector determined by the direction of the
impulsive force acting at the ‘source’ station r2. With these modifi-
cations, eq. (73) provides the foundation for computing Fréchet ker-
nels for ambient-noise Green’s functions based on the SI method.

5.2.3 Kernel examples

In our first kernel example for ambient-noise Green’s functions, we
solve the Lamb’s problem (Lamb 1904) in a homogeneous half-
space model, with constant P-wave velocity (6500 m/sec), S-wave
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Perturbation kernels for GSDF 881

Figure 9. Fréchet kernels for a Rayleigh wave from a vertical point impulsive force acting at station FMP and recorded at station SLA. The 3-D SCEC CVM4.0
seismic structure model was used for the calculation. The vertical-component observed ambient-noise Green’s function and the corresponding synthetic Green’s
function as well as the isolation filter (red) are shown in panel a. The seismogram perturbation kernels for phase-delay time δtp at 0.05–0.15 Hz are shown in
panels b and c. Panels d and e show the map-views of the Fréchet kernels at 5.0 km depth for δtp at 0.05 Hz (panel d) and 0.15 Hz (panel e) with respect to
S-wave speed β. Panels f and g show the cross-section views of the Fréchet kernels for phase-delay times with respect to β at the station-station vertical plane.

velocity (3500 m/sec) and density (3000 kg/m3). Both stations are
on the free surface and the distance between the two stations is
36.0 km. We applied an upward vertical unit impulsive force on sta-
tion STA2 (Fig. 8) and then computed three-component synthetic
seismograms at the station STA1 using a fourth-order staggered-
grid finite-difference code (Olsen 1994). The predominate feature
in our vertical-component synthetic seismogram is a non-dispersive
surface wave (Fig. 8a) as noted in Rayleigh (1885) and Lamb (1904).

The seismogram perturbation kernels for GSDF phase-delay times
at 1.0–2.5 Hz are shown in Figs 8(b) and (c). The β sensitivity ker-
nels at 1.0–2.5 Hz are shown in Figs 8(d)–(g). From the map-views
and cross-sections of the β sensitivity kernels we can see that the
kernel at 1.0 Hz has a wider first Fresnel zone and higher sensitivity
at larger depth than the kernel at 2.5 Hz. At lower frequencies, the
wavelength is longer, thus the seismic wave is sensitive to a larger
area off the ray path.
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In our second example, we adopted the 3-D SCEC CVM 4.0
as our structure model and used two broad-band stations SLA and
FMP for computing synthetic Green’s functions and their sensi-
tivity kernels. The SLA station is located near the Death Valley
National Park and the FMP station is located in Fort Macarthur
Park and the distance between the two stations is about 200 km. We
applied a vertical unit impulsive force on ‘source’ station FMP and
station SLA acted as a ‘receiver’ station (Fig. 9). The dispersion
effect is visible on the vertical-component synthetic seismogram
(Fig. 9a). The seismogram perturbation kernels for GSDF phase-
delay times at 0.05–0.15 Hz are shown in Figs 9(b) and (c). The
map-views and cross-sections of β sensitivity kernels are shown in
Figs 9(d)–(g). We also observe frequency-dependence of the ker-
nels. The complexity of the kernels is due to the 3-D heterogeneities
in the structure model.

6 D I S C U S S I O N

The formulation given in this paper departs from that given in Gee
& Jordan (1992) at eq. (4), in which we expand the autocorrelation
C̃ f f (t) into a Fourier series instead of a Gram-Charlier series as
given by eq. (15) in Gee & Jordan (1992). The consequence of this
modification is two-folded. First, it allows us to remove the restric-
tion on the frequency-shift parameter ξ3 and replace it with a much
less restrictive requirement, that is, as long as the variation of Ãn

within the effective bandwidth is sufficiently small, the windowed
and narrowband-filtered auto-correlagram Fi WC̃ f f (t) can always
be well matched by a five-parameter Gaussian wavelet. Secondly, it
allows us to avoid a Taylor expansion of the differential propaga-
tion operator at a reference frequency as given by eq. (44) in Gee &
Jordan (1992) and 2nd- and higher-order dispersion effects are au-
tomatically accounted for in eqs (39)–(42) and (61)–(66). In Gee &
Jordan (1992), the sensitivity kernels are computed for δτx as shown
in eq. (93) and δτx are obtained from the GSDF observables δtx by
solving eqs (56)–(59) (i.e. correcting the effects of windowing and
narrowband filtering on the target waveform), which might become
unstable when |ξ3| is large. In this paper, we directly construct the
sensitivity kernels for the GSDF observables δtx and account for the
effects of windowing and narrowband filtering in the seismogram
perturbation kernels Jx(t), which improves the stability of the mea-
surements and the kernels. We also gave a noise model for the GSDF
observables δtx based on the seismogram perturbation kernels and
a noise power spectrum.

The GSDF analysis has been successfully applied to image seis-
mic velocity structures using waveform data from natural earth-
quakes (e.g. Gaherty et al. 1996; Katzman et al. 1998; Chen et al.
2007b) as well as to inversions for earthquake source parameters
(e.g. McGuire et al. 2001; Chen et al. 2005; Chen et al. 2010). The
same methodology can also be applied on ambient-noise Green’s
function data, which can be easily incorporated into full-3D tomo-
graphic inversions and potentially provide additional constraints on
earth structures.
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