Oxidative Stress in Brassica rapa and Humans

Stan DeVore

UW Honors Program & EPSCoR Mentor: Dr. Carmela Rosaria Guadagno

Presentation Overview

- Reactive Oxygen Species (ROS)
- ROS systemic signaling in Plants
- EPSCoR Project: ROS and Memory Stress in *B. rapa*
- ROS functions in humans

NBT Staining: Detecting ROS in Plants

Reactive Oxygen Species (ROS)

- Natural physiological molecules
- Derived from oxygen
- Both radical and non-radical
- Produced during...
 - Natural physiological processes
 - Stress conditions

Why are ROS important?

Oxidative Damage

- Basal rate of production
 - Purpose for antioxidants
 - Enzymatic
 - Non-enzymatic (e.g. pigments)

- In high amounts → damage to major macromolecules
 - Proteins
 - DNA
 - Carbohydrates
 - Lipids (e.g. Cell membranes)

ROS in Cellular Signaling

ROS Signaling in Plants

ROS Generation in the Peroxisome

- Sites of cellular ROS production:
 - Chloroplast
 - Electron Transport Chain (ETC)
 accidentally gives electrons to O₂
 instead of CO₂
 - Peroxisome
 - Rubisco accidentally using O₂ instead of CO₂ to create glycolate
 - Mitochondrion
 - ETC accidentally gives an electron to dissolved O₂
 - Various enzymes
 - NADPH Oxidases (NOX)
 - Dual Oxidases (DUOX)

Drought-Induced ROS Signaling

- Some Identified ROS Signaling Functions:
 - Abscisic Acid (ABA) Signaling
 - ABA: drought stress plant hormone ("phytohormone")
 - Required to close stomata of plant leaves
 - H₂O₂ needed in ABA signaling pathway
 - Ethylene Synthesis
 - Ethylene: another stress-associated phytohormone
 - Ethylene also implicated in stomatal closure in some plants
 - H₂O₂ and superoxide assist in inducing its synthesis
 - Inducing *DRT112* Expression:
 - H₂O₂ presence increases expression of a DNA repair protein (DNA-damage-Repair/Toleration)
 - Helping mediate ROS damage to DNA

ABA

Stoma (pl. stomata) in Tradescantia

Investigating ROS in Stress Memory

Stress Memory:

After an initial exposure to a stress, the ability of an organism to physiologically respond better to a subsequent exposure to the same stress

Research Question:

Could ROS be involved in the development of stress memory in *Brassica rapa?*

EPSCoR Project

Fall 2014 & Spring 2015

- Under Drs. Brent Ewers and Carmela Rosaria Guadagno
- Large-population experiment: Identifying lines of *Brassica rapa* that may efficiently use ROS to develop stress memory
- Four stressors:
 - Drought
 - High Temperature
 - Free-Running Conditions
 - High Light

My role in the project:

- "Tuning" the ROS assay
- Establishing a baseline level of stress measurable and comparable amongst all four stress treatments
 - How intense should the stress be applied?
 - How long should the stress be applied for?

Experimental Design

- For each stress (e.g.: DROUGHT):

 - R2 \rightarrow Recovery 2

- R1 → Recovery 1 18 Control Plants
- D2 → Drought 2 18 Control Plants
 - 18 Control Plants

- D1 → Drought 1 18 Control Plants 18 Droughted Plants
 - 18 Droughted Plants
 - 18 Droughted Plants
 - 18 Droughted Plants

144 Plants

- All plants B. rapa (R500 genotype)
- Grown in environmentally identical conditions

Experimental Design

Measure Fluorescence & Soil Moisture

Each Harvest:

- Harvest from both Control & Stress
- Measure:
 - Fluorescence
 - Soil Moisture
 - Membrane Leakage
 - Lipid Peroxidation
 - Biomass

Control

Day 0

Stress

Control

Day 5

Stress

Day 13

BEGIN DROUGHT FOR STRESS

Control

Day 33

Stress

Control

Day 37
HARVEST D1 PLANTS

Stress

Soil Moisture

Fluorescence

- Purpose: Identify "lipid peroxidation"
 - Occurs when ROS attacks lipid membranes
- NBT = "Nitro Blue Tetrazolium Chloride"
 - Reacts with ROS-damaged membranes to produce formazan
 - Formazan appears purple!
- Remove green chlorophyll with 80% ethanol

1 Day Drought
Extra Stress Plant

6 Days Drought
Extra Stress Plant

Staining Failed-

The stress was too prolonged and leaves could no longer conduct the NBT solution.

11 Days Drought
Harvested Stress Plant

Experimental adjustments upon preliminary results

- The drought stress of 11 days resulted too strong for NBT staining application
- Experimental adjustments:
 - Re-water droughted plants to determine recovery rate
 - Dry down Control plants to see how far into drought the NBT staining is reliable
- Run a new experiment using obtained information

Day 6: Rewatered Stress

ROS in Humans

UW Honors Program Senior Project

- DNA, protein, lipid, & carbohydrate damage
- ROS implicated in human diseases
- Example: Diabetes Mellitus (Types I & II)
 - High levels of glucose → ROS generation
 - Downstream consequences:
 - Diabetic retinopathy (retina)
 - Diabetic neuropathy (neurons)
 - Diabetic nephropathy (kidneys)
 - Glaucoma
 - Atherosclerosis

ROS in Humans

- ROS used in normal physiological processes
- Examples:
 - Thyroid synthesis
 - Macrophage activity
 - Pathogen defense in lung mucosae

ROS in Humans

ROS in cells without (left) vs with (right) UCPs

Orange: ROS

- ROS can be signaling molecules in signaling pathways
- Examples:
 - Vascular smooth muscle remodeling
 - Inducing DNA & protein repair mechanisms
 - Inducing proteasome activity to degrade ROS-oxidized proteins
 - Upregulating uncoupling proteins (UCPs) to decrease ROS production in mitochondria
- Other functions under investigation, and yet to be discovered

Acknowledgements

- University of Wyoming Honors Program
- University of Wyoming EPSCoR
- UW Botany Department
 - Dr. Carmela Rosaria "Lina" Guadagno -Mentor
 - Dr. Brent Ewers
 - Kaleb Kenneaster
 - Kim Glidden & Kassy Skeen
 - Bridger Huhn & Tim Aston
- UW Physiology Department
- Dr. Pamela Langer
- Friends and Family

Questions?

