GnRH Agonists Alter Body Composition After Long Term Exposure

Grace Shearrer, (Brian S. Edwards, Arik W. Smith and Donal C. Skinner)

The Reproductive Axis

- •The reproductive axis in mammals has three key players: the hypothalamus, pituitary, and reproductive organs.
- The hypothalamus is a portion of the brain which releases **neurohormones**.
- -One such neurohormone is **Gonadotropin**-releasing hormone (GnRH).
- -GnRH is released from the hypothalamus and stimulates the pituitary gland.
- •The pituitary gland sits beneath the brain.
- The GnRH acts on the pituitary gland signaling for the **release of two hormones**:
 - Luteinizing Hormone (LH)
 - •Follicular Stimulating Hormone (FHS)

http://www.homefertility.com/mi.html

The Reproductive Axis

- LH and FSH further act on the Leydig cells and Sertoli cells of the testes in male mammals to promote sexual maturation.
- Further stimulates the release of androgens, such as testosterone.
- In females, LH and FSH regulate the onset and continuation of menses.
- The reproductive axis is self regulating through a negative feedback mechanism.
- High levels of any of the component hormones act to shut down the axis.
- This is accomplished through an intricate interaction between various receptors in the hypothalamus and pituitary gland.

http://www.homefertility.com/mi.html

Using a Negative Feedback Mechanism for Good

- •A GnRH agonist mimics constant exposure to high levels of GnRH from the hypothalamus.
- The high levels of GnRH suppress the reproductive axis through desensitization.
- GnRH agonists have proven useful in the treatment of a bevy of disorders, including:
- Endometriosis
- Uterine fibroids
- Polycystic ovarian syndrome
- Prostate Cancer

GnRH Agonists and Prostate Cancer: A Love Hate Relationship

- 600,000 men received GnRH agonist therapy in 2007 in the US alone.
- However, GnRH agonists are not without side effects.
- In humans, GnRH agonist therapy is associated with increased subcutaneous adiposity, with a decrease in lean mass and muscle.
- Men receiving a GnRH agonists often experience:
- Hot flashes
- -Weight gain
- Increase risk of diabetes
- Increase risk of osteoporotic fracture
- Most alarming is the marked increase in risk of cardiovascular disease (CVD).
- In October of 2010 prompted the FDA to issue a warning concerning GnRH agonists and CVD.

Materials and Methods

- Adult male 137 day old Sprague-Dawley rats were treated subcutaneously for 6 weeks or 8 months with a sham implant or a slow-release low (1.1mg) or high (14.1mg) dose deslorelin implant (GnRH agonist; Suprelorin®; Peptech Animal Health).
- Implants were removed at the end of treatment.
- To determine whether effects were testosterone dependent, a subset of the 6 week rats were treated with a testosterone implant.
- An additional subset was castrated.

Results

8 months 1.1mg Deslorelin

Deslorelin & Castration on BW

Results

1.1mg Deslorelin & Testosterone on BW

Recovery from 6 weeks 1.1mg Deslorelin

What does it mean Basil?

- The data shows an apparent arrest and decrease in weight gain in male rats.
- •The reduced weight appears to be independent of testosterone.
- Despite an increased duration of exposure to a high dose enhances testicular atrophy (see picture), body weight is not further compromised.
- In humans, GnRH agonists are well implicated in the decrease of lean body mass, decrease in muscle size and increase in subcutaneous fat.

Testes

What does it mean Basil?

- The alteration of lean versus fatty mass has significant metabolic implications.
- Increased subcutaneous adiposity is a well know risk factor for both diabetes and CVD.
- Decreased muscle size and lean body mass contribute to **sarcolema**.
- Other studies also suggest that GnRH agonists contribute to decrease bone mass.
- The combination of sarcolema and decrease bone density could explain the high fracture risk.

Testes

Where Do We Go From Here?

- The interplay between GnRH and their ability to alter metabolic profile over an extended period is largely unstudied.
- Further research (summer, 2011) will explore the effect of GnRH agonists on lean muscle and fat deposition, as well as the effects on bone mineral content.
- Lipid panels will be used to explore variations in triglycerides and cholesterol levels in male rats.
- Triglyceride composition in the body are key determinants in CVD and diabetes risk.
- Insulin and glucose measurements will be assessed to further investigate possible diabetes risk.
- Diabetes is an independent risk factor for CVD.
- Enzyme-linked immunosorbent assay (ELISA) will be used to perform hormone analysis.
- Increased hormone levels could implicate GnRH working in previously unknown endocrine pathways such as:
- Leptin
- Insulin

Where Do We Go From Here?

- Dual-energy X-ray absorptiometry (DEXA) scans will also be preformed.
- DEXA will allow us to track changes in bone metabolism in the same animals over an extended period of time.
- DEXA also will allow us to see changes in adiposity in the animals' bodies.
- To further test bone mineral content, EDTA titrations will be preformed to determine calcium and magnesium concentrations.
- Atomic absorption spectroscopy will also be used to analyze phosphorous concentrations.

Acknowledgements

- •Funding was provided thanks to the Wyoming NSF EPSCoR
- •A special thank you to my primary investigator Donal Skinner and his graduate students Brian Edwards and Arik Smith