Wyoming NSF/EPSCoR Undergraduate Research Fellowship

Nanoindentation of Polymers

Ashley Bucsek

Nano- and Micro-Mechanics Laboratory members:

Chung-Souk Han, Ph.D.
Nitin Garg
Farid Alisafaei
Seyed Hamid Reza Sanei
Rajib Krishna Shasa

Background | Hypotheses | Instrumentation | Procedure | Results | Discussion | Current Research

Small-scale polymers

- Coatings and adhesives
- Micromechanical devices
- Biomedical microdevices
- Composites

Boisen, A. et al. (2011). [Figure 8] "Cantilever-like micromechanical sensors," *Reports on Progress in Physics*, 74.

- Engineers use mechanical properties to safely predict the behavior of objects under applied loads.
- ➤ It is important to understand the properties of polymers at very small scales.

Hardness: the resistance of a material to permanent penetration by another significantly harder material

On the macroscale, material properties like hardness are constant.

Indentation Size Effects (ISE): the <u>apparent</u> increase in material-specific properties at very small scales

Metals

ISE well documented, well understood

Polymers

■ ISE <u>not</u> well document, <u>not</u> well understood

Research

- Study ISE in polymers, using polydimethylsiloxane (PDMS)
- Improve the understanding of ISE in polymers
- Help develop physically based theories to model and explain ISE in polymers

1. ISE can be observed in PDMS.

2. These ISE vary with different cross-link densities.

Callister, W. (2010). [Figure 14.7] "Materials Science and Engineering: An Introduction, 8th ed."

G200 Nano IndenterTM
Agilent Technologies

Nanoindenter tip under a load, F, displacing a material to an indentation depth, h

Berkovich indenter tip

Parameters

- Surface Approach Sensitivity, K_{tol}
- Time to Load
- Hold Time
 - Maximum Load, F_{max}

Results

Maximum Indentation Depth, h_{max}

Permanent Indentation Depth, h_f

Cross-Link Densities

- **2.5%**
- **5%**
- **10%**

Parameters

- Time to Load: 5 seconds
- Hold Time: 0 seconds
- Surface Approach Sensitivity, K_{tol} : 50 N/m
- Maximum Load, F_{max} : 0.3 mN to 45 mN

Berkovich Tip Sizes

- 0.3 mN to 10 mN: "Berkovich ISO Tip"
- 8 mN to 45 mN: "Berkovich MACRO Tip"

Universal Hardness, H_{II}

$$H_U = \frac{F}{26.43h^2}$$

$$F = \frac{2E \tan \alpha}{\pi (1 - v^2)} h^2$$

ISO 14577-1 Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: test method. International Organization for Standardization (2002). Sneddon, I. "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile." Int. J. Eng. Sci. 3. (1965): 47-57.

 h_{max} (μ m)

Two important characteristics:

- 1. Drastic increase with decreasing indentation depths below 90 μm
- 2. Reach transient quantity as indentation depths increase above 90 µm

- The material property, elastic modulus, does not actually increase.
- Has been shown to be constant by lab member, Seyed Hamid Reza Sanei.
- The problem is how the test results are used to calculate elastic modulus.
- Classical continuum theories do not account for strain gradients.

This research will help shed light on the shortcomings of classical continuum theory.

Unanswered Question: How does ISE vary with cross-link density?

Current Project Goals:

- 1. Determine appropriate surface approach sensitivity criteria, K_{tol} .
- 2. Repeat testing for 2.5%, 5%, and 10% with new K_{tol} .
- 3. Repeat experimental procedure for epoxy.
- 4. Interpret for a manuscript to be submitted for publication in an international scientific journal.

Thank you for your attention.

Special Thanks to Dr. Han and EPSCoR.

Questions?