Thumbnail Image

Granular growth of Fe3O4 thin films and its antiphase boundaries prepared by pulsed laser deposition

Zhou, W. L.
Wang, K.-Y.
O'Connor, C. J.
Tang, Jinke
Fe3O4 thin film prepared by pulsed laser deposition on Si (100) substrate has been investigated by transmission electron microscopy from plane and cross-sectional views. The thin film, which shows a spinel structure as characterized by selected-area diffraction, is about 180 nm thick with granular growth of particle size about 50 nm. High resolution electron microscopy observations indicate reduced thickness of the native SiO2 layer between the thin film and Si due to rastering of the substrate surface by an unfocused laser beam before the deposition. By using a 220 diffraction spot in two beam condition near the ‹001› axis of a single Fe3O4 grain, antiphase boundaries (APBs) inside the grains could be clearly resolved. The existence of APBs in the thin film is consistent with the magnetic experiments including an open hysteresis loop and unsaturated magnetization in relatively high magnetic fields. This study suggests that APBs are not unique to Fe3O4 films grown on MgO substrates.
Journal Title
Journal ISSN
Volume Title
University of Wyoming. Libraries