Loading...
Insight Into Volatile Behavior At Nyamuragira Volcano (D.R. Congo, Africa) Through Olivine-Hosted Melt Inclusions
Head, E. M. ; Shaw, A. M. ; Wallace, P. J. ; Sims, Ken ; Carn, S. A.
Head, E. M.
Shaw, A. M.
Wallace, P. J.
Sims, Ken
Carn, S. A.
Abstract
Description
We present new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic eruptions of Nyamuragira volcano (1912, 1938, 1948, 1986, 2006). Host-olivine Mg#'s range from 71 to 84, with the exception of the 1912 sample (Mg# = 90). Inclusion compositions extend from alkali basalts to basanite-tephrites. Our results indicate inclusion entrapment over depths ranging from 3 to 5 km, which agree with independent estimates of magma storage depths (3-7 km) based on geophysical methods. Melt compositions derived from the 1986 and 2006 Nyamuragira tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. Volatile concentrations of the 1986 and 2006 samples are as follows: H2O ranged from 0.6 to 1.4 wt%, CO2 from 350 to 1900 ppm, S from 1300 to 2400 ppm, Cl from 720 to 990 ppm, and F from 1500 to 2200 ppm. Based on FeOT and S data, we suggest that Nyamuragira magmas have higher fO2 (>NNO) than MORB. We estimate the total amount of sulfurl dioxide (SO2) released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) Nyamuragira eruptions using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ~1 Mt; 2006 = ~2 Mt). Potential explanations for this observation are: (1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or (2) syn-eruptive gas release from unerupted magma.
Date
2011-10-04
Journal Title
Journal ISSN
Volume Title
Publisher
University of Wyoming. Libraries
Research Projects
Organizational Units
Journal Issue
Keywords
effusive volcanism,eruption mechanisms,excess sulfur,melt inclusions,volcanic gases,Geology