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Path Property Constant 
on Process Path 

Moving 
Boundary Work 

Formula 

Restrictions 
on System and 

Materials 

Isobaric System Pressure Wb=P·(V2-V1) Closed 

  wb= P·(v2-v1) Closed 

  Wb=mR·(T2-T1) Closed and Ideal Gas 

  wb=R·(T2-T1) Closed and Ideal Gas 

Isothermal System Temperature Wb=mRT·ln(v2/v1)  Closed and Ideal Gas 

  wb=RT·ln(v2/v1)  Closed and Ideal Gas 

Isochoric System Volume Wb=0 Closed and Rigid 

  wb=0 Closed and Rigid 
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Chapter 1 

Engineering Thermodynamics analyzes three types of stored energy. These 

are spring energy (energy associated with a compressed spring), electrical energy 

(energy associated with a charged battery), and internal energy (energy 

associated with molecular and atomic motions). We also analyze energy that’s 

transferring into and out of materials. Consistent with pedagogy1, we refer to the 

two most common energy transfer processes as heating/cooling and working. 

Mass transport is another form of energy transfer analyzed in Engineering 

Thermodynamics. 

What are the key topics in Engineering Thermodynamics? In this class, you 

learn how to calculate, for a variety of materials, changes of stored energy and 

how to calculate energy transfers due to heating/cooling, working, and mass 

transport. Overall, Engineering Thermodynamics investigates how the energy 

transfer processes change energy stored within materials. 

Consider the following example. Figure 1.1 shows an external agent 

compressing a gas within an insulated piston-cylinder device. We refer to the gas 

as the system and refer to everything beyond the gas/cylinder boundary as the 

surroundings. Typically, only a fraction of the work done by the external agent is 

transformed to an increase of the internal energy of the gas.  In Engineering 

Thermodynamics, we investigate reasons for and consequences of that 

inefficiency. 

  

 
1 R. Romer, Heat is Not a Noun, American Journal of Physics, 69, 197 – 109, 2001 
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Figure 1.1 - Compression a gas in an insulated piston-cylinder device. Note that 

the boundary between the gas and its surroundings is drawn so that the piston 

walls are not included in the definition of the system. 
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Additional examples are how heating/cooling and working interact with a 

fluid cycled through a shaft-work-generating device (an engine) and how 

heating/cooling and working interact with a fluid cycled through a shaft-work-

consuming device (a refrigerator). When investigating these topics, you will see 

that energy input to an engine’s working fluid and energy output from the fluid, 

both evaluated over one complete cycle, have the characteristic that their net 

sum is zero. Similarly, you will see that energy input to the fluid that’s cycled 

through a refrigeration loop and energy output from that fluid, both evaluated 

over one complete refrigeration cycle, have the characteristic that their net sum is 

zero.  

In our analysis of thermodynamic cycles (engines and refrigerators) we deal 

with several topics important to energy use efficiency. These include the 

temperature of the source of heat that’s transferred to the working fluid (engines 

and refrigerators), the fraction of the heat input that’s converted to shaft work 

(engines), and the temperature of the heat sink where heat is dumped (engines 

and refrigerators). Two physical laws are required for this. Additionally, we will 

see that engine and refrigeration cycles repeat, typically a few cycles per minute, 

and in the case of some engine cycles, the repeat frequency is many cycles per 

minute.  
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The device shown in Fig. 1.2 is an example of an engine in which H2O is the 

working fluid. You see two mechanical devices, the pump and turbine, and two 

devices that exchange heat, the high-temperature exchanger and the low-

temperature exchanger. If you consider one complete trip of the working fluid, 

clockwise through the loop (Fig. 1.2), you can say this:  

0in out in outQ Q W W− + − =   (1.1) 

Eqn. 1.1 is the First Law of Thermodynamics for the engine cycle. Here the 

symbols inQ and outQ are representing heating/cooling amounts for one cycle, as 

magnitudes, and the symbols inW and outW  are representing the working amounts 

for one cycle, also as magnitudes. There are two assumptions implicit in Eqn. 1.1. 

First, mass is not being input to or output from the fluid loop. Second, a fluid 

parcel moving through the loop returns to the same thermodynamic state as it 

previously started the loop. 

In this course, you learn how to calculate the efficiency of a cycle. Eqn. 1.2 

is a general statement of an engine’s thermal efficiency 

out in

in

W W

Q


−
=

  (1.2) 

You also learn how to calculate an engine’s maximum-possible thermal efficiency.  

This is done using the Second Law of Thermodynamics.  
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Figure 1.2 – Mechanical devices (pump and turbine), and the two heat exchangers 

common to a shaft-work-producing device (i.e., an engine). Commonly, H2O is the 

working fluid that is cycled through this type of device. 
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There are two more things about the engine cycle in Fig. 1.2. Each of the 

steps is associated with an energy transformation. In the pump, shaft work is 

input while the fluid is compressed, in the high-temperature heat exchanger the 

fluid receives energy via heat transport, in the turbine shaft work is output while 

the fluid expands, and in the low-temperature heat exchanger the fluid outputs 

energy via heat transport. In the previous sentences, and in Fig. 1.2, we are 

describing what is happening from the perspective of the material (aka, the 

working fluid). This “egotistical” point-of-view is the one we apply, in this class, 

when doing thermodynamic calculations. 

Now let’s look at a device, a refrigerator, which transfers heat from a cold 

zone to a hot zone (Fig. 1.3). Comparing Fig. 1.3 with Fig. 1.2 you can see four 

important differences between an engine and a refrigerator. First, an engine is a 

work producing device while a refrigerator is a work consuming device. That is, 

work input to the fluid that’s cycling though the refrigeration loop is necessary for 

transporting heat from a cold zone to a hot zone. Said differently, heat naturally 

transports from hot to cold, and so, heat transport from cold to hot requires a 

cost. Payment is made by inputting work (shaft work) as the fluid passes through 

the compressor (Fig. 1.3). Second, the “sense” of the heat input is different. In Fig. 

1.2 the fluid accepts heat at high temperature while in Fig. 1.3 the fluid accepts 

heat at low temperature. Third, the sense of the heat output is different. In Fig. 

1.2 the fluid rejects heat at low temperature while in Fig. 1.3 the fluid rejects heat 

at high temperature. Finally, for one complete trip of the fluid, counterclockwise 

through the refrigeration loop (Fig. 1.3), the First Law of Thermodynamics says 

this:  

0in out inQ Q W− + =   (1.3) 
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Clearly, a refrigeration cycle’s First Law of Thermodynamics is missing a work 

output term. This is consistent with the earlier statement that refrigerators are 

work-consuming devices.  
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Figure 1.3 – Mechanical component (compressor), and the two heat exchangers 

common to a shaft-work-consuming device (i.e., a refrigerator). Commonly, 

refrigerant 134A (tetrafluoroethane) is the fluid that cycles through this type of 

device.  
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Chapter 2 

In Chapter 2 you investigate temperature, length, time, and mass. Also, you 

will see the dimension of energy used in Engineering Thermodynamics - the 

kilojoule (kJ, 1 kJ = 1000 kg m2 s-2) - and a unit conversion required for many 

thermodynamic calculations. At the end of the chapter, there is discussion of the 

reversible/irreversible terminology used in thermodynamics. 

Temperature 

One of the key concepts thermodynamics is temperature. Within a gas, 

temperature is a proxy for the average speed of the molecules. We will be using 

temperature measurements reported in degrees Celsius and in degrees Kelvin. 

These temperature scales are represented oC and K, respectively. Furthermore, a 

Kelvin temperature and a Celsius temperature differ by an additive constant. 

273.15K CT T= +   (2.1) 

Now let’s look at a consequence of Eqn. 2.1. In Engineering 

Thermodynamics, we often analyze systems whose internal energy is increased by 

heating. We evaluate the effect of heating by measuring the system’s 

temperature prior to and at the conclusion of a heating process. The two 

temperatures are called the start state temperature (T1) and the end state 

temperature (T2). Also, the temperature change is symbolized 2 1T T T = −  and can 

be evaluated in Kelvin, expressed as 

( ) 2 1( 273.15) ( 273.15)C CK
T T T = + − +   (2.2) 

or in Celsius, expressed as 

( ) 2 1( 273.15) ( 273.15)K KC
T T T = − − −    (2.3) 
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So, it’s obvious that the 273.15 in Eqns. 2.2 and 2.3 cancel and it follows that a 

temperature change, evaluated on the Kelvin scale, is equal to a temperature 

change evaluated on the Celsius scale. 

In Engineering Thermodynamics, a property known as a specific heat 

capacity is reported with the dimension kJ kg-1 K-1 and with the dimension kJ kg-1 

oC-1. In either case, the numerical value of the specific heat capacity is the same2.  

For example, the specific heat capacity of liquid water is 4.18 kJ kg-1 K-1 and this is 

equivalent to 4.18 kJ kg-1 oC-1.  

Understanding the heat capacity equivalence discussed in the previous 

paragraph requires a few concepts. First, specific internal energy, in Engineering 

Thermodynamics, is assigned the dimension kilojoule per kilogram (kJ kg-1). Also, 

in many applications, but not all, a differential equation defines the relationship 

between specific heat capacity ( c ), specific internal energy (u ), and temperature.  

du
c

dT
=

  (2.4) 

Third, Eqn. 2.1, when differentiated, says that a differential of Kelvin temperature 

and a differential of the corresponding Celsius temperature are equal (i.e., 

K CdT dT= ).  

Now let’s investigate specific heat capacity conceptually. Specific heat 

capacity represents the energy input required to increase the temperature of one 

kilogram of a material by one degree3. From that perspective, and from the 

equivalency of a one-degree Kelvin change and a one-degree Celsius change, the 

dimension of specific heat capacity can be either of kJ kg-1 K-1 or kJ kg-1 oC-1. 

 
2 See https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html 
3 Implicit in this definition is the assumption that vaporization and/or condensation do not occur during the energy 
input. 
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Starting with Eqn. 2.4, and separating differential of temperature from the 

differential of specific internal energy, we can say this 

du c dT=  .  (2.5) 

Integrating Eqn. 2.5 between a start state specified by { 1 1,u T } and an end state 

specified by { 2 2,u T }, and assuming c  is a constant, we get the following 

2 1 2 1( )u u c T T− =  − .  (2.6) 

Eqn. 2.6 says that a specific heat capacity (dimension kJ kg-1 K-1) multiplied by a 

temperature change in K, and a specific heat capacity (dimension kJ kg-1 oC-1) 

multiplied by a temperature change in oC, give the same answer. For example, if a 

system contains water ( c = 4.18 kJ kg-1 K-1 and c = 4.18 kJ kg-1 oC-1), and the 

system’s temperature change is T = 20 K, equivalent to T = 20 oC, both 

approaches generate the same specific internal energy change (83.6 kJ kg-1). 

The Dimensions Length, Mass, and Time 

In contrast with the previous section where the addition of a constant 

made the conversion from Celsius to Kelvin (Eqn. 2.1), the unit conversions 

discussed in this section involve multiplication.   

A distinction between Engineering Thermodynamics and Engineering 

Dynamics is that temperature change, and the energy transfers that drive 

temperature change, are the central focus of thermodynamics. In dynamics, the 

emphasis is on mechanical energy and associated forces. In addition, there is also 

some commonality. In both thermodynamics and dynamics, the meter, the 

kilogram, and the second are base dimensions. In the following paragraphs the 

dimensions of energy, power, force, and pressure, are formulated in terms of the 

base dimensions. 
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Because you have taken Engineering Dynamics you know how to formulate 

kinetic energy and gravitational potential energy. Within the metric system, you 

also know that both kinetic energy and gravitational potential energy are 

represented with the dimension kg m2 s-2. These ideas follow from the following 

definitions of an object’s kinetic energy change and its gravitational potential 

energy change. 

( )2 2

2 1

1

2
KE m V V =  −

  (2.7) 

2 1( )PE m g z z =   −   (2.8) 

In thermodynamics, we frequently evaluate the internal energy change of 

systems. Eqn. 2.6, multiplied by the mass of a system, is one example of this. One 

of the challenges of thermodynamics is learning how to consider an internal 

energy change with a change of kinetic energy and a change of potential energy 

(i.e., Eqn. 2.7 and 2.8).  Of course, additive combination of these energetic terms 

must be done in a manner that is dimensionally consistent. Since common 

practice, in engineering, is that energetic terms are reported in kilojoule, we need 

a factor which converts from the dimension kg m2 s-2 (e.g., Eqn. 2.7 and 2.8, both 

from Engineering Dynamics) to the kilojoule (kJ). Table 2.1 has the information 

needed for this conversion. The table also has information for converting specific 

energy (i.e., energy per unit mass with dimension m2 s-2) to specific energy with 

dimension kJ kg-1, and for other conversions. It is common practice in engineering 

to report power in kilowatt (kW), force in kilonewton (kN), and pressure in 

kilopascal (kPa).   

  



14 
 

Table 2.1 – Unit Conversion in Engineering Thermodynamics 

Property Value and dimension Equivalent 
formulated in 

metric base units 
Energy 1 kJ 

(one kilojoule) 
1000 kg m2 s-2 

Specific Energy 1 kJ kg-1 
(one kilojoule per kilogram) 

1000 m2 s-2 

Power 1 kW 
(one kilowatt) 

1000 kg m2 s-3 

Force 1  kN 
(one kilonewton) 

1000 kg m s-2 

Pressure 1 kPa 
(one kilopascal) 

1000 kg m-1 s-2 
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Reversible and Irreversible 

I want you to consider moving an object horizontally, in a straight line, from 

location (1) to location (2). The distance between (1) and (2) will be the same for 

all scenarios considered below. You are the mover. We will also say that the 

object at (1) is at rest. There are two categories to consider, and within these two 

categories, there are numerous scenarios: 

Frictionless. This implies that the object’s kinetic energy at (2) (KE2) is equal to the 

work you apply moving the object from (1) to (2).  

Frictional. In this situation (e.g., sliding heavy furniture), your intention is that the 

object arrives at (2) with zero kinetic energy (KE2 = 0). Hence, other than the fact 

that the object was moved horizontally from (1) to (2), you have nothing to show 

for your work. 

First consider the frictionless scenarios. Making these occur faster requires 

larger speed at (2), larger kinetic energy at (2), and therefore more work. By using 

a spring and latch at (2) we are going to transform the object’s kinetic energy at 

(2) to spring energy at (2).  

Now consider the frictional scenarios. These require that the object arrives 

at (2) with zero kinetic energy (KE2 = 0) and that means that the last portions of 

these trajectories will be decelerations. The frictional scenarios share a 

characteristic with the frictionless scenarios: Faster completion requires larger 

speed and more work. The frictional scenarios also have a characteristic not seen 

in the frictionless scenarios: Imagine surfaces of variable roughness. For the same 

time to completion a rougher surface necessitates more work than a smoother 

surface.  
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In thermodynamics, because of the variable nature of work - even when 

specifying the horizontal distance between (1) and (2) – we say that work is a path 

function. In other words, evaluation of work requires information about the time 

interval for the process, in both scenarios (frictional and frictionless), and the 

degree of roughness in the frictional scenarios. 

There is something else about the frictionless and frictional scenarios that’s 

relevant to thermodynamics. The frictional scenarios are said to be dissipative. 

This conveys the notion that the work you did was transformed to thermal energy 

which is “loose” in the surroundings. The First Law of Thermodynamics says that if 

you add up the thermal energy released into the surroundings, you find that its 

numerical value is equal to the work you did. Of course, this assumes that the 

object arrives at (2) with zero kinetic energy, but this is one of the constraints 

discussed at the beginning of this section. Also, for the frictional scenarios, the 

Second Law of Thermodynamics says that there is no way to transform the 

thermal energy, which is loose in the surroundings, into all the energy needed to 

reverse the (1) to (2) process. Consequently, we say that frictional processes 

transform available forms of energy into a less available forms of energy. In the 

problem just considered, the less available form of energy is the thermal energy 

loose in the surroundings. We also say that a process involving friction is an 

example of an irreversible process. In thermodynamics, we say that a frictionless 

process is an example of a reversible processes. 

In addition to friction, other phenomena make processes irreversible. In 

this class, what are we implying when we use the word irrreversible? An 

irreversible process has at least one of the following characteristics: 1) If friction is 

involved, it transforms macroscopic kinetic energy (something we can see) into 
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the energy of molecular and atomic motion (something we cannot see); 2) If heat 

transport occurs, then the heat receiver is at an appreciably lower temperature 

than the heat source; 3) If expansion or compression occur, this happens at a 

speed comparable to or larger than the speed of sound; 4) Stored electric energy 

is tapped for space heating; or 5) There is a missed opportunity to produce work. 

More generally, irreversible means that restoration of a state (reversal of a 

process) requires input of energy from an external source.  

In contrast, a reversible process has at least one of the following 

characteristics: 1) No frictional loses (i.e., no transformation of macroscopic 

kinetic energy to the energy of molecular and atomic motion); 2) If heat transport 

occurs, it is reversible (i.e., the heat receiver is only slightly colder than the heat 

source); 3) If expansion or compression occur, this happens at a speed much 

slower than the speed of sound; 4) Stored electric energy is not tapped for space 

heating, rather, a device known as a heat pump is used; or 5) There is no missed 

opportunity to produce work. More generally, reversible means that a process 

can be reversed without an input of energy from an external source. 
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Chapter 3 

In Chapters 1 and 2, you reengaged Engineering Dynamics. Additionally, we 

worked problems relevant to both dynamics and thermodynamics. In Engineering 

Dynamics, you saw how Newton’s Second Law (mass times acceleration equals 

sum of forces) can be used to calculate the speed and position of an object 

experiencing drag. You also saw how drag transforms a particular type of kinetic 

energy (i.e., the motion of a macroscopic object) to another type of kinetic energy 

- kinetic energy associated with molecular and atomic motion (aka, internal 

energy). Additionally, you saw how the conservation of total mechanical energy is 

used to analyze a class of dynamical problems (falling objects and their interaction 

with springs), ignoring the effect of drag. 

Sketches of two in-class problems are in Figs. 3.1a – b.  Fig. 3.1a shows the 

deceleration you analyzed. You now know that this process dissipates 

macroscopic kinetic energy to microscopic kinetic energy (i.e., internal energy 

increases while the object slows). Generally, anytime you see evidence of drag 

you should say, “Ah, from the perspective of thermodynamics, this process is 

dissipative and irreversible.” Fig. 3.1b has the problem whose basis was the 

conservation of total mechanical energy (there were no springs in this problem). 

This process can be reversed using a spring. That is, the rock can be returned to its 

initial position if a spring is used to transform the rock’s downward macroscopic 

kinetic energy into upward macroscopic kinetic energy. Reversibility also requires 

the assumption that drag is negligible and that the spring is perfect at 

transforming the rock’s motion into and out of spring energy. 
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Figure 3.1 – a) An airplane decelerates under the influence of the drag force. 

During this process there is a transformation of the airplane’s macroscopic kinetic 

energy to an increase of internal energy. b) In the falling rock problem, we ignore 

the effect of drag. Consequently, the rock’s macroscopic potential energy 

decreases and the rock’s macroscopic kinetic energy increases and there are no 

other energetic effects. 
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In this chapter you go from dynamics to thermodynamics. You will see a 

general statement of the First Law of Thermodynamics. This has terms coming 

from the concept of total mechanical energy conservation; however, it also has 

terms describing internal energy, heating/cooling, working, and energy transfer 

associated with mass transport.  

As we saw previously, we will be using the First Law of Thermodynamics to 

describe energetic processes from the perspective of material that’s contained 

within a boundary (i.e., the system). This is the egotistical point-of-view described 

in Chapter 1 and is the basis for everything we do in Engineering 

Thermodynamics. 

First Law of Thermodynamics 

In words, the First Law of Thermodynamics says that the effect of energy 

input, minus the effect of energy output, equals the net change of a system’s 

energy. Mathematically, the First Law of Thermodynamics looks like this: 

, ,in out in out mass in mass out systemQ Q W W E E E− + − + − =   (3.1) 

We can also write the First Law of Thermodynamics this way 

, , 2 1in out in out mass in mass outQ Q W W E E E E− + − + − = −
  (3.2) 

In Eqn. 3.2 the symbol E2 is representing the system energy at an end state and E1 

is the system energy at a start state. 

According to definition, system energy has contributions from a system’s 

macroscopic kinetic energy, its macroscopic potential energies (e.g., gravitational 

potential energy), and its internal energy 

2 2 2 2E KE PE U= + +   (3.3) 

1 1 1 1E KE PE U= + +   (3.4) 
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So, we can write the First Law of Thermodynamics this way: 

, ,in out in out mass i mass eQ Q W W E E KE PE U− + − + − =  + +   (3.5) 

In an analysis of a system that does not accept energy input associated with 

mass transport, and does not output energy via mass transport, the following two 

terms are zero in Eqn. 3.5: ,mass iE and ,mass eE . This situation is relevant to closed 

systems and will be the focus of this chapter and Chapter 4. In that case (see Fig. 

3.2), the First Law of Thermodynamics is 

in out in outQ Q W W KE PE U− + − =  + + .  (3.6) 
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Figure 3.2 – There is no mass exchange between a closed system and its 

surroundings. The First Law of Thermodynamics says that closed systems only 

exchange energy with their surroundings by heating/cooling and working. 
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In the First Law equations written here (Eqns. 3.1, 3.2, 3.5, and 3.6) the 

subscripts in and out indicate the directions of the energy transfers. In words, 

they represent the effects of heating/cooling, working, and mass transport on the 

energy content of a system. Consistent with how we are formulating the First Law 

of Thermodynamics, these six terms are magnitudes. Depending on circumstance 

these terms can be greater than zero, equal to zero, but because they are 

magnitudes, they are never less than zero. Additionally, each of these modes of 

energy transfer occur at the boundary between a system and its surroundings. 

Hence, a First Law analysis should include a drawing of the system that’s being 

analyzed and should show the location of the boundary between the system and 

its surroundings. A system drawing is presented in Fig. 3.3. This shows a closed 

system, the four energy transfers applicable to a closed system (Qin, Qout, Win, and 

Wout), and the fact that these transfers take place at the boundary between the 

system and its surroundings. 
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Figure 3.3 – Heating/cooling and working are the only modes of energy transfer 

relevant to closed systems. These modes of energy transfer occur at the boundary 

between a closed system and its surroundings. 
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Internal Energy 

The symbols U and u are measures of a system’s internal energy. The 

relationship between a change of internal energy and a change of specific internal 

energy is given by Eqn. 3.7 

U m u =    (3.7) 

where m  is the mass of material contained within a system boundary. 

For now, we are assuming that vaporization and/or condensation do not 

occur during the process being analyzed. In that case, Eqn. 2.6 expresses how a 

change of specific internal energy (u) is related to the change of temperature 

(T). The property “c” in Eqn. 2.6 is a specific heat capacity4. For different 

materials the values of specific heat capacity range between 0.1 kJ kg-1 K-1 and 15 

kJ kg-1 K-1. Combining Eqns. 2.6 and 3.7 we arrive at Eqn. 3.8. 

U m c T =     (3.8) 

Eqn. 3.8 relates thermodynamic properties (internal energy, system mass, 

specific heat capacity, and temperature), and is commonly referred to as a 

property relationship. This particular property relationship expresses how internal 

energy changes in response to a change of temperature.  

Level Braking and the First Law of Thermodynamics 

Consider Fig. 3.4; this shows the system now being analyzed. There is 

something special about this system. This system contains two subsystems. One is 

the car and the other is the car’s brake rotors. The mass of one rotor will be 0.5 

kg, and since there are four brakes and four brake rotors, the mass of all brake 

rotors is mb = 2.0 kg. The figure shows the car slowing because its brakes are 

 
4 See https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html 
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being applied. In this problem we are going to specify the initial and final speeds 

(V1 = 30 m s-1 and V2 = 10 m s-1), the mass of the car (mc = 500 kg), the specific 

heat capacity of the brake rotor material (c = 0.5 kJ kg-1 K-1), and the initial 

temperature of the brake rotors (T1 = 300 K).  With this information we can use 

Eqns. 3.6 and 3.8 to calculate the final temperature of the brake rotors. 
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Figure 3.4 – In this level-braking process the car’s macroscopic kinetic energy is 

decreasing and the internal energy of the car’s brakes is increasing. 
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Think about the terms in Eqn. 3.6 which are zero in this problem. The 

change of the car’s gravitational potential energy (PE) is zero because the car’s 

altitude is constant. The cooling term (Qout) is zero because we are assuming that 

the braking process occurs very fast and so there is no time for the brake rotors to 

shed heat. Also, air drag is assumed negligible. Finally, the work input term is zero 

because the Fig. 3.4 does not show an external agent pushing the car.  

Equation 3.9 is the form of the First Law relevant to the system discussed in 

the previous paragraph and we are going to use that equation to calculate T2. 

( )2 2

2 1 2 12 2

1 1 1
0

1000 2 2
c c b

kJ
m V m V m c T T

kg m s−
 

= − +   − 
    (3.9) 

In Eqn. 3.9 you see a unit conversion factor multiplying the KE term. This is from 

Table 2.1 and converts the dimension of KE from kg m2 s-2 to kJ. The conversion 

factor also makes Eqn. 3.9 dimensionally homogeneous. The answer is T2 = 500 K. 

Now we are ready to think conceptually about the level braking problem. 

During this process the car’s macroscopic kinetic energy was transformed to the 

internal energy of the brakes. Further, if you speculate that there is a way to 

convert the energy of the hot brakes back into car motion, you are thinking 

reasonably, but you are missing the fact that that the energy increase 

experienced by the brake rotors is being shared with the brake’s surroundings. 

This is occurring because of heat transport from the hot brake rotors to their cool 

surroundings. 

A few parting thoughts before we leave this problem: 1) the process we 

analyzed (car slowing and the brake’s temperature increasing) is dissipative and 

irreversible, 2) generally, making the car go fast again requires an energy source 

different from the energy that was deposited into the brake rotors in the first 
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place, and 3) reclamation some of the energy of deceleration is possible, but this 

is not done by extracting the energy from hot brake rotors, rather it is done by 

switching an electric generator into the drive train when the brakes are applied 

(the Toyota Hybrid device is one example). 

Intensive and Extensive Thermodynamic Properties 

You should now be comfortable using the symbol “m” to represent the 

mass of material contained within a closed system. An example of this is in Fig. 

3.2. What’s likely new for you is that specific internal energy, specific heat 

capacity, specific volume, specific enthalpy, and specific entropy are all defined as 

intensive thermodynamic properties. Given that, the relationships between 

specific internal energy and internal energy ( /u U m= ), between specific heat 

capacity and heat capacity ( /c C m= ), between specific volume and volume (

/v V m= ), between specific enthalpy and enthalpy ( /h H m= ), and between 

specific entropy and entropy ( /s S m= ) are fairly obvious. The same type of 

relationship holds for the process variables known as heating/cooling ( /q Q m= ) 

and working ( /w W m= ). In words, “ w ” is an intensive work interaction, and “W

” is an extensive work interaction, and similarly for the intensive and extensive 

forms of heating/cooling. 

A distinguishing characteristic of intensive properties, as well as the 

intensive process variables (e.g., work specific to a unit of system mass), is that 

they are unaffected by the quantity of matter being analyzed. For example, 

consider the air in the room you are currently in. The pressure is fixed (in Laramie 

this is ~ 78 kPa) and the temperature is fixed (room temperature is ~ 295 K). 

Furthermore, the same pressure and temperature characterize the air inside the 

Arena Auditorium. In the next chapter you will see that pressure and temperature 
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uniquely determine air’s specific volume. It follows that the specific volume, an 

intensive property, is equal for room air and Arena Auditorium air. This 

equivalence is also true for specific internal energy, specific heat capacity, specific 

enthalpy, and specific entropy. However, because the Arena Auditorium is much 

more extensive, the corresponding extensive properties (volume, internal energy, 

heat capacity, enthalpy, and entropy) are much larger for the air in the Arena 

Auditorium.  

Stationary Systems 

Except for the level braking problem discussed previously, most of the 

systems we analyze are stationary. This concept is illustrated in Fig. 3.5. The word 

stationary implies that a system’s macroscopic speed is not changing. Hence, a 

stationary system’s macroscopic kinetic energy is also not changing. Furthermore, 

stationary implies that a system’s potential energies (gravitational potential 

energy and spring energy) are also not changing. Because of these restrictions, 

the First Law equations discussed next cannot be used to analyze systems that 

move vertically, that deform a spring, or that accelerate or decelerate 

horizontally. 
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Figure 3.5 – Stationary and closed are adjectives used to describe the systems 

analyzed in Chapters 3 and 4. 
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Here is the extensive form of the First Law of Thermodynamics for a closed 

and stationary system 

in out in outQ Q W W U− + − =   (kJ) (3.10) 

The First Law of Thermodynamics for a closed and stationary system also has a 

rate form 

in out in out

dU
Q Q W W

dt
− + − =  (kJ s-1) (3.11) 

and an intensive form 

in out in outq q w w u− + − = . (kJ kg-1) (3.12) 
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Moving Boundary Work 

Systems are compressed when an external agent applies a force sufficient 

to overcome the system pressure (Fig. 1.1). Systems also expand. Which way this 

goes (compression or expansion) depends on system pressure, the area of the 

piston, and the force applied by the external agent. The energetic consequence of 

a compression (i.e., an external agent working on the system as in Fig. 1.1), or of 

an expansion (system working on the surroundings), is called moving boundary 

work. 

Since work is conceptually a path function (Chapter 2), moving boundary 

work must be evaluated using information about the process path. In this context 

“process path” specifies how the system’s pressure (P) varies during a 

compression or expansion. The extensive equation and the intensive equation 

defining moving boundary work are Eqns. 3.13 and 3.14, respectively. Note Eqn. 

3.13 has the differential of system volume (dV [m3]) and an upper-case “W”, and 

that in Eqn. 3.14 has the differential of system specific volume (dv [m3 kg-1]) and a 

lower case “w.” Finally, the subscript “b” on both W and w is distinguishing 

moving boundary work from other possible work interactions. 

2

1
bW PdV= 

 (kJ) (3.13) 

2

1
bw Pdv= 

 (kJ kg-1) (3.14) 
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Table 3.1 has the formulae used for calculating moving boundary work. The 

table is separated into results for three process paths: 1) constant pressure 

(isobaric), 2) constant temperature (isothermal), and 3) constant specific volume 

(isochoric). The final column notes that some of the relationships are restricted to 

systems containing an ideal gas and that the relationships are only valid for closed 

systems.  
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Table 3.1 – Moving Boundary Work Formulas and Restrictions 

  Path Property that’s  
Constant along the 

Process Path 

Moving 
Boundary Work 

Formula 

Restrictions on System 
and Material 

Isobaric System Pressure Wb=P·(V2-V1) Closed 

  wb= P·(v2-v1) Closed 

  Wb=mR·(T2-T1) Closed and Ideal Gas 

  wb=R·(T2-T1) Closed and Ideal Gas 

Isothermal System Temperature Wb=mRT·ln(v2/v1)  Closed and Ideal Gas 

  wb=RT·ln(v2/v1)  Closed and Ideal Gas 

Isochoric System Volume Wb=0 Closed and Rigid 

  wb=0 Closed and Rigid 
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The formulas in Table 3.1 generate a value of moving boundary work 

greater than zero for expansion and less than zero for compression. Because the 

work terms in the First Law are magnitudes, a reconciliation of numerical sign is 

needed. Equations 3.15 and 3.16 do that. 

Expansion (Wb > 0): 

Wout = Wb  (3.15) 

Compression (Wb < 0): 

Win = -Wb  (3.16) 

A compression is shown in Fig. 3.6. The top part of the graphic shows a 

process path in P versus V coordinates. In this coordinate system, the magnitude 

of moving boundary work is equal to the area under the process path. However, 

in this example, each infinitesimal dV is less than zero. Consequently, the Wb 

integral in this case (compression) is a number less than zero. The bottom part of 

the graphic shows how the system volume is decreased from the start to the end 

of the compression. 
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Figure 3.6 – Moving boundary work is defined as the integral of system pressure 

through a change of system volume. In this case (compression, Wb  <  0) an 

external agent is forcing the system to smaller volumes. From the view point of 

the system, there is a gain of energy. The energy gain can be symbolized as either 

Win or as -Wb.  
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Heating/Cooling and Heat Transport 

The system shown in Fig. 3.7 is transferring energy to cooler surroundings. 

Details of what’s going on are studied in heat transport courses. In Fig. 3.7, and in 

this course generally, we focus on heat transport solely due a temperature 

difference between a system and its surroundings. That is, we ignore the fact that 

some objects (e.g., a hot potato) lose energy both by heat and mass (vapor) 

transport. In Fig. 3.7, we say that the potato (the system) is experiencing a 

decrease in internal energy and that this decrease is a consequence of heat 

transport. 

 Before finishing this chapter, let’s say a few more things about 

heating/cooling.  1) Heating/cooling can act with working to change the internal 

energy of closed and stationary systems. This is a verbal statement of what Eqn. 

3.10 is describing. 2) Like working, heating/cooling is a process, not a property.  3) 

Looking at Fig. 3.7, and Eqn. 3.10, we can say that, from the perspective of the 

potato, heat output is Qout = 2 kJ (recall, Qout is a magnitude). We can also say that 

Qin - Qout = -2 kJ, but we must not say (or write) Q = -2 kJ. This “” notation is 

reserved for changes of properties. 4) Heat transport occurs when there is a 

temperature difference between a system and its surroundings, when the system 

is not insulated, and when enough time is allowed for heat transport to occur.  
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Figure 3.7 - The process known as heating/cooling is associated with a 

temperature difference at the boundary between a system and its surroundings. 

In this example, the potato system (hotter) is losing energy by heat transport. 

Also, the potato’s surroundings (cooler) are gaining an equivalent amount of 

energy by heat transport.  
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Chapter 4 

We now do First Law analyses of closed and stationary systems and 

complement that with several homework problems. In these analyses you see 

how measurements made inside the system - at a start state and at an end state – 

are used to calculate the change of the system’s specific internal energy ( u ). 

Then, assuming the mass of the system is known, you can calculate the system’s 

internal energy change ( U ; Eqn. 3.7). The latter is one of five terms in the 

system’s First Law of Thermodynamics (Eqn. 3.10). Since U is known and moving 

boundary work is calculated using the same property measurements used to 

calculate the change of internal energy (Table 3.1), the extensive net heat input (

in outQ Q− ) can be calculated using Eqn. 3.10. 

In another problem involving a closed/stationary system, the mass of the 

system is unknown. In that case, you do a First Law analysis using the intensive 

form (Eqn. 3.12). A result of that calculation is the intensive net heat input (

in outq q− ). 

The final case involves heating/cooling rates and rates of working. Again, 

you consider a closed and stationary system. These problems are relevant the 

industry called Heating, Ventilation, and Air Conditioning (HVAC). In this type of 

problem, Eqn. 3.11 is applied, additional information is included (discussed in 

lecture), and the system’s net heating rate ( in outQ Q− ) is calculated in a First Law 

analysis.  
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Gibbs Phase Rule 

Josiah Willard Gibbs (1839 – 1903) was an American engineer and scientist. 

Gibbs determined the number of intensive thermodynamic properties needed to 

specify the state of systems containing a specified number of materials and a 

specified number of phases. Going forward, we only consider systems with phase 

= liquid, with phase = gas, or with phase = liquid/gas mixture. Also, we only 

consider systems containing one material. These are known as single-component 

systems.  

Let’s reacquaint with the names of the intensive properties that 

characterize states. These are temperature, pressure, and these five intensive 

properties: specific internal energy, specific heat capacity, specific volume, 

specific enthalpy, and specific entropy. Gibbs demonstrated that two (2) is the 

number of intensive properties that must be measured to “fix the thermodynamic 

state” of a single-component and single-phase system. Further, Gibbs showed 

that the other five intensive properties can be calculated using property 

relationships or can be looked up in property tables. We refer to the last two 

sentences as the Gibbs Phase Rule for a single-component and single-phase 

system.  

Materials in the systems we analyze will be to air, nitrogen (N2), and Helium 

(all noncondensible gases), H2O (a condensible gas), or R134A (also a condensible 

gas). The adjective “condensible” is telling us something important and this is 

discussed next.  
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Property Relationships for Ideal Gases 

For materials that are gases, and only for gases that behave in a particular 

way, one of the property relationships relevant to the Gibbs Phase Rule is the 

ideal gas equation of state, also known as the ideal gas equation.  

There are two forms of the ideal gas equation. The first of these is an 

intensive form (Eqn. 4.1) and the second is an extensive form (Eqn. 4.2). 

P v R T =    (4.1) 

V
P R T

m
 =    (4.2) 

In these equations P (kPa) is the gas’ absolute pressure (in thermodynamics 

pressure is measured relative to a complete vacuum), v (m3 kg-1) is specific 

volume, R is the specific gas constant (for air this is 0.287 kPa m3 kg-1 K-1 or 0.287 

kJ kg-1 K-1), T (K)  is the temperature of the gas, V (m3) is the volume of the gas, 

and m  (kg) is the quantity of material (mass of the gas).  

The previous section distinguished between a noncondensible gas – air is 

an example – and two condensible gases (H2O and R134A). Why this distinction? 

A condensible gas, by definition, is capable of being condensed. An example of a 

gas-to-liquid phase change (aka, condensation), and one that occurs in some work 

producing devices, is what is occurring in the low-temperature heat exchanger in 

Fig. 1.2. Further, the reverse of this, the liquid-to-gas phase change (aka, 

evaporation), is what is occurring in the low-temperature heat exchanger in Fig. 

1.3. Recall that Fig. 1.3 is a drawing of a work consuming device known as a 

refrigerator. 

Inside the devices shown in Figs. 1.2 and 1.3 the fluid is gas in parts of the 

loop, but this gas is never “far” from situations where its phase description is 
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liquid. Logically, it does not make sense to apply a gas equation (e.g., Eqn. 4.1) in 

an analysis of H2O, in Fig. 1.2, or R134A in Fig. 1.3. Consequently, we only apply 

Eqns. 4.1 and 4.2 to the materials air, nitrogen (N2), and the “noble” gases5. These 

three materials are known to “behave” as ideal gases. There is another way of 

saying this. When making measurements of within an ideal gas, all combinations 

of P , T , and v  make the left-hand side of Eqn. 4.1 equal to the right-hand side 

of Eqn. 4.1. This test is a “fail” for liquids and for gas in a state with pressure and 

specific volume comparable to the material’s critical point pressure and critical 

point specific volume. 

For systems containing an ideal gas, Eqn. 4.1 can be used to calculate 

specific volume using measurements of pressure (barometer) and temperature 

(thermometer). This squares well with statements of the Gibbs Phase Rule in the 

previous section. However, when doing an analysis with the First Law of 

Thermodynamics you need more information than provided by the ideal gas 

equation. And, since our focus here and in Chapter 3 is closed and stationary 

systems, the relevant First Law equations are Eqns. 3.10, 3.11, and 3.12. In these, 

a value for the change of an ideal gas’ specific internal energy ( u ; kJ kg-1) is 

needed.  A property relationship is used for this. Additionally, a property 

relationship is used for calculating the change of an ideal gas’ specific enthalpy (

h ; kJ kg-1). Eqns. 4.3 and 4.4 are approximate but are good enough for some 

types of problems. 

( )2 1vu c T T =  −   (4.3) 

( )2 1ph c T T =  −   (4.4) 

 
5 Noble gases include helium, neon, argon, krypton, xenon, and radon. 



44 
 

In these equations, vc  is the “ vc  specific heat capacity” and 
pc  is the “

pc specific 

heat capacity.”  The former relates a change of temperature to a change of 

specific internal energy and the latter relates a change of temperature to a 

change of specific enthalpy. 

The adjective “heat” in “heat capacity” is a remnant of how, the vc and 
pc  

are measured in laboratories. It is important to recognize that the specific heat 

capacities are not heat transport. Rather, the two ideal gas specific heat 

capacities, and specific heat capacities in general, are intensive properties. The 
pc  

specific heat capacities for air, N2, and Helium are tabulated online6. Specific gas 

constants (R; see Eqns. 4.1 and 4.2) for those same materials are also tabulated 

online7.  

In class, we demonstrate, by proof, the relationship between the specific 

gas constant and the temperature-dependent ideal gas specific heat capacities (

vc  and 
pc ). Eqn. 4.5 is the result. 

( ) ( )P vc T c T R= +   (4.5) 

  

 
6 https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html 
7 https://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html 

https://www.engineeringtoolbox.com/specific-heat-capacity-d_391.html
https://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html
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Best-possible Calculation of u , h , and s  for Air 

This section is for the material known as “air” and we limit the discussion to 

“dry air” to avoid the somewhat different properties of dry air / vapor mixtures. 

Our focus is the best-possible (i.e., most accurate) methods for calculating u , h

, and s  for air. Other ideal gases require the same treatment when the best-

possible accuracy is desired, but equations describing the relevant specific heat 

capacities are different from those presented here for dry air. 

Values typically used when applying Eqns. 4.3 and 4.4 are vc = 0.718 kJ kg-1 

K-1 and 
pc = 1.01 kJ kg-1 K-1. Figure 4.1 shows these values are the specific heat 

capacities at T = 300 K. The best-possible accuracy in calculations of u  and h  is 

obtained using a function that accounts for the temperature dependencies of vc  

and 
pc , respectively. The next equation comes from laboratory measurements 

which provided the measurements used to fit the temperature-dependent ( )vc T  

function. 

2 3( )vc T A B T C T D T= +  +  +   (kJ kg-1K-1) (4.6) 

In Eqn. 4.6, with A = 0.7547, B = -3.288x10-4, C = 7.897x10-7, and D = -3.612x10-10, 

the dimension of vc  is kJ kg-1 K-1 and the dimension of T is K. Combining Eqns. 4.5 

and 4.6 we get the temperature-dependent 
pc specific heat capacity 

2 3( )pc T A B T C T D T R= +  +  +  +  (kJ kg-1K-1) (4.7) 

Eqns. 4.6 and 4.7 are graphed in Fig. 4.1. 
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Figure 4.1 – Measurements of vc and the function that describes the temperature 

dependence of vc  for the ideal gas known as “air.” The vc  measurements are 

fitted with a cubic polynomial (bottom dotted line). The top dotted line describes 

the temperature-dependent pc . The two functions are presented in the text.   

  



47 
 

When needing the most accurate determinations of u  you should 

integrate with Eqn. 4.6 as the integrand and when needing the most accurate 

determinations of h  you should integrate with Eqn. 4.7 as the integrand. Also, 

you need to recall that the specific gas constant (for air) is R = 0.287 kJ kg-1 K-1. 

The integral expressions for u  and h  are Eqns. 4.8 and 4.9. 

( )
2

1

2 3

T

T

u A B T C T D T dT = +  +  +    (kJ kg-1) (4.8) 

( )
2

1

2 3

T

T

h A B T C T D T R dT = +  +  +  +   (kJ kg-1) (4.9) 

In class, you see how to do the integrations – Eqns. 4.8 and 4.9 - on a calculator.  

Since an equation describing air’s temperature-dependent vc is now 

available, the change of air’s specific entropy ( s ) can also be formulated. We 

need this for analyzing the Otto, Diesel, and Brayton engine cycles. 

Derivation of the specific entropy ( s ) formula starts with the intensive 

form of the First Law of thermodynamics. In contrast to how that equation was 

written (Eqn. 3.12), we now write it as a differential equation. 

q Pdv du − =   (4.10a) 

Eqn. 4.10a is rigorous for closed and stationary systems for which the only work 

interaction is moving boundary work. Now, let’s imagine a process path that is 

reversible. In that case the inexact heat differential in Eqn. 4.10a can be replaced 

with the product of temperature and the differential of specific entropy. 

Tds Pdv du− =   (4.10b) 
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Now let’s restrict the discussion to air, an ideal gas. In that case the 

temperature-dependent vc  is, by definition, the temperature derivative of 

specific internal energy8. Hence, Eqn. 4.10b can be written 

( )vTds Pdv c T dT− =  .  (4.10c) 

Eqn. 4.10c, once integrated, becomes Eqn. 4.10d. 

( )2

1

2

1

ln

T

v

T

c T v
s dT R

T v

   
 =  +    

  
   (4.10d) 

In class, you see how to do this integration on a calculator.  

P/T/v Diagram for H2O and R134A 

The information presented in the previous two sections explains how to 

calculate u , h , and s  for systems containing an ideal gas. This and following 

sections explain how to calculate u , h , and s for systems containing 

condensible materials. In this class, those materials are H2O and R134A.  

Within common engineering systems, and depending on application, the 

materials H2O and R134A can exist as gas, as liquid, and as a mixture of liquid and 

gas. Figure 4.2 shows a generalized / /P T v  property diagram for a single-

component condensible material. Coordinates on the / /P T v  surface are different 

for different materials.  For H2O, the critical point9 is at 
cpP = 22,000 kPa, 

cpT = 374 

oC, and 
cpv = 0.003 m3 kg-1, and for R134A, the critical point is at 

cpP = 4,100 kPa, 

cpT = 101 oC, and 
cpv = 0.002 m3 kg-1. Also, you see labeling indicating different 

regions and the phase descriptions assigned to these regions. For example, to the 

left of the dome is “liquid” and to the right of the dome is “gas.” 

 
8 This follows from the Fundamental Theorem of Calculus which says Eqn. 4.6 is the temperature derivative of Eqn. 
4.8, provided the upper limit in Eqn. 4.8 is a variable temperature (T) and the lower limit in Eqn. 4.8 is a constant. 
9 At temperature larger than its critical point temperature, a material’s phase description is gas.  
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Figure 4.2 – The / /P T v   property diagram for a single-component material.  

Coordinates on the / /P T v  surface are different for different materials.  For H2O 

the critical point properties are cpP  = 22,000 kPa, cpT = 374 oC, and cpv = 0.003 m3 

kg-1. For R134A the critical point properties are cpP = 4,100 kPa, cpT = 101 oC, and 

cpv = 0.002 m3 kg-1.  
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Figure 4.3 was constructed by collapsing all the pressure information in Fig. 

4.2, into a two-dimensional representation of temperature (T) versus specific 

volume ( v ). Figure 4.3 also enlarges the neighborhood around the dome region. 

Practically speaking, this is where we need to focus our attention. We see that the 

liquid region (Fig. 4.2) is also referred to as the compressed liquid region (Fig. 4.3), 

that the gas region (Fig. 4.2) is also referred to as the superheated gas region (Fig. 

4.3), and that under the dome is the liquid/gas mixture region (Fig. 4.3).  You also 

see that the boundary between the compressed liquid region and the liquid/gas 

mixture region is called the saturated liquid line, and that the boundary between 

the liquid/gas mixture region and the superheated gas region is called the 

saturated vapor line. 
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Figure 4.3 - T versus v  diagram for a single-component condensible material. 

Lines of constant pressure are called isobars. Larger pressure isobars lie “above” 

lower pressure isobars in this T vs v representation.  
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In the T versus v  diagram (Fig. 4.3) we can imagine three process paths: 1) 

An isothermal process follows a horizontal line, 2) an isochoric process follows a 

vertical line, and 3) an isobaric process follows a line of constant pressure (i.e., an 

isobaric process follows one of the isobars drawn in Fig. 4.3). Along these process 

paths a material’s temperature is constant (isothermal process), a material’s 

specific volume is constant (isochoric process), and a material’s pressure is 

constant (isobaric process). 

 In the rest of this chapter, you learn how to navigate the five regions of the 

T versus v  diagram (Fig. 4.3). These regions are assigned names that describe the 

phase of the material. The names are: 1) compressed liquid, 2) saturated liquid, 3) 

liquid/gas mixture, 4) saturated vapor, and 5) superheated gas. Going forward, we 

will refer to these names as “phase descriptions.” In the next section you will also 

see that the same five regions are evident in other thermodynamic diagrams. Of 

importance to us are the following three diagrams: 1) T versus u , 2) T versus h , 

and 3) T versus s . Additionally, the final sections of this chapter will describe how 

to use tabulated data. You are going to use that information for evaluating the 

specific internal energy, specific enthalpy, and specific entropy of states, and for 

calculating u , h , and s . Before going into details of the tabulated data, the 

following section discusses the words “saturated” and “saturated state.” 

Saturated Liquid and Vapor States 

Where do saturated liquid states plot in the T versus v  (specific volume) 

coordinate system (Fig. 4.3), in the T versus u  (specific internal energy) 

coordinate system, in the T versus h  (specific enthalpy) coordinate system, and in 

the T versus s  (specific entropy) coordinate system? The answer is the same in 

all these coordinate systems: The saturated liquid states plot on the saturated 
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liquid line at the left edge of the dome region. This is shown in T versus v  

coordinates in Fig. 4.3. What do you “see” when you investigate a material whose 

phase description is saturated liquid? You see liquid, only liquid. 

To clarify further, we say that a saturated liquid is “ready to vaporize.” 

Note, if you process saturated liquid by adding heat isobarically, some of the 

liquid vaporizes (the amount of vaporization is determined by the overall mass of 

material and by how much heat is added), and the result is a phase description 

known as liquid/gas mixture. Finally, if the heat addition is sufficient to vaporize 

all the liquid, and then more heat is added, and these things are done isobarically, 

the end-state phase description is superheated gas.  

Similarly, what do you “see” when you investigate a material whose phase 

description is saturated vapor? You see gas, only gas. To clarify further, we say 

that saturated vapor is “ready to condense.” Note, if you process saturated vapor 

by removing heat isobarically, some of the vapor condenses (the amount of 

condensation is determined by the overall mass of material and by how much 

heat is removed), and the result is a phase description known as liquid/gas 

mixture. Finally, if heat removal is sufficient to condense all the gas, and then 

more heat is removed, and these things are done isobarically, the end-state phase 

description is compressed liquid. 
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Quality 

Properties of a single-component system containing a liquid/gas mixture 

vary with the relative amount of liquid and gas contributing to the mixture. A 

property known as quality (  ) is used to quantify that variance. Quality is defined 

as the mass fraction of gas in a liquid/gas mixture. From the discussion in the 

previous two sections, a system containing only saturated liquid is characterized 

by quality equal to zero (  = 0), and a system only containing saturated vapor 

system is characterized by quality equal to one (  = 1).  

In some problems we know the amount of saturated liquid ( fm ) and the 

amount of saturated vapor ( gm ) within a system. In that case, Eq. 4.11 is used to 

calculate quality. 

g

f g

m

m m
 =

+   (4.11) 

Figure 4.4 shows a single-component system containing a liquid/gas 

mixture. Apparent are the two masses relevant to Eqn. 4.11 (
fm  and 

gm ). Also 

apparent are the specific volumes corresponding to the saturated liquid (
fv ) and 

saturated vapor (
gv ) portions of the mixture. 
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Figure 4.4 – The upper-right rectangle shows a single-component liquid/gas 

mixture. Equation 4.11 say the mixture’s quality is the mass fraction of vapor. The 

T versus v  diagram shows the liquid/gas mixture at a particular temperature. 

Note: The material’s overall specific volume ( v ) is greater than fv , evaluated at 

the temperature of the mixture, and that v  is less than gv , also evaluated at the 

temperature of the mixture. 
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Using Tabulated Data for H2O and R134A  

Tabulated data are used to calculate u , h , and s  for systems 

containing condensible materials. This is a three-step process. First, you evaluate 

the specific internal energy (or specific enthalpy or specific entropy) at a start 

state, second, you evaluate the specific internal energy (or specific enthalpy or 

specific entropy) at an end state, and third, you calculate u , h , and s by 

differencing the properties (end state minus start state). 

The first two rows of Table 4.1 have the information needed to look up 

properties for H2O or R134A systems whose phase description is either 

compressed liquid or superheated gas. 
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Table 4.1 –Thermodynamic Property Tables for H2O and Refrigerant 134A 

Phase description What do you know? Online Table 
What can be looked up 

in the Online Table 

Compressed Liquid 1  P and T 2 Link 3 , u, h, and s 

Superheated Gas 1  P and T Link 3 , u, h, and s 

Saturated Liquid 1  T Link 3 Psat,T, f, uf, hf, sf, g, ug, hg, and sg 

Saturated Liquid 1  P Link 3 Tsat,P, f, uf, hf, sf, g, ug, hg, and sg 

Liquid/gas Mixture 1  T Link 3 Psat,T, f, uf, hf, sf, g, ug, hg, and sg 

Liquid/gas Mixture 1  P Link 3 Tsat,P, f, uf, hf, sf, g, ug, hg, and sg 

Saturated Vapor 1  T Link 3 Psat,T, f, uf, hf, sf, g, ug, hg, and sg 

Saturated Vapor 1  P Link 3 Tsat,P, f, uf, hf, sf, g, ug, hg, and sg 
 

1 Thermodynamic Property Tables are entered with P in megapascal and with T in 

oC. 

2 At relatively low pressures, data is unavailable for compressed liquid. In that 

case, these approximations are used: ,f Tv v= , ,f Tu u= , ,f Th h= , and ,f Ts s= . 

3 Thermodynamic Property Tables have u and h with dimension kJ kg-1 and s with 

dimension kJ kg-1 K-1. 

  

https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
https://www.ohio.edu/mechanical/thermo/property_tables/
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The bottom six rows of Table 4.1 have the information needed for single-

component systems whose phase description is saturated liquid, liquid/gas 

mixture, or saturated vapor. These rows demonstrate three things. First, a 

temperature measurement can be used to look up the system’s pressure. The 

tabulated pressure is called the “saturation pressure at temperature T” and is 

symbolized
,sat TP . Second, a pressure measurement can be used to look up the 

“saturation temperature at pressure P.” The latter is symbolized 
,sat PT . Third, eight 

intensive properties can be looked up. These are the specific properties 

corresponding to saturated liquid (
fu , 

fh , 
fv , and 

fs ) and the specific properties 

corresponding to saturated vapor (
gu , 

gh , 
gv , and 

gs ).  

In many problems you enter the tabulated data knowing that a system’s 

phase description is liquid/gas mixture, and knowing the system’s temperature 

(or pressure), and its quality. From Table 4.1 you can retrieve eight specific 

properties. Now you have enough information to calculate four system wide 

specific properties. This is done using Eqns. 4.12a - d.  

( )f g fu u u u= +  −
  (4.12a) 

( )f g fh h h h= +  −
  (4.12b) 

( )f g fv v v v= +  −
  (4.12c) 

( )f g fs s s s= +  −
  (4.12d) 

Going forward we will refer to these as “overall specific properties of a saturated 

liquid/gas mixture” or as “overall specific properties.” We say “overall specific 

properties” because the right-hand sides of the Eqns. 4.12a - d account for 

contributions of saturated liquid and saturated gas to properties of the mixture. 
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Chapter 5 

Control Volumes 

In thermodynamics, control volume, refers to a device with an inlet or an 

exit, or with both an inlet and exit. At an inlet, fluid flow adds energy to the 

control volume, and at an exit, fluid flow subtracts energy from the control 

volume. In this class, our focus is on control volumes that are stationary. In that 

case, the form of energy that is added to, or subtracted from, is the internal 

energy content of the control volume. 

Mass Budget of a Steady Flow Control Volume 

Let’s revisit the low-temperature heat exchanger in Fig. 1.2. This is an 

example of a control volume with one inlet and one exit; it is also a component of 

a larger system (an engine). Simply described, the low-temperature heat 

exchanger is a pipe with fluid (H2O in this case) entering at an inlet and leaving at 

an exit.  

Now think about a mass budget for fluid moving through the pipe. The 

simplest description is to say that the rate that mass enters is equal to the rate 

that mass leaves. In other words, the mass of material within the pipe is not 

changing with time. We characterize this situation by saying that the mass budget 

is “steady”, or that a “steady flow” (aka, SF) situation is maintained between inlet 

and exit. Mathematically, the pipe’s SF mass budget says that the rate of mass 

input (occurring at the inlet “i”) is equal to the rate of mass output (occurring at 

the exit “e”). 

i em m=  (kg s-1)  (5.1) 
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Now focus on the larger system in Fig. 1.2. Given what’s shown in the 

figure, and what we know about this type of engine system, and with H2O the 

working fluid, it’s reasonable to say that no H2O is enters the system and no H2O 

is leaves the system. Hence, the amount of fluid within the system is not changing 

with time. It’s also reasonable to say that the mass flow rate into and out of any 

of the four component devices is the same as discussed in the context of the low-

temperature heat exchanger (Eqn. 5.1).  

Since Fig. 1.2 is a simplified drawing of the engine system, there are caveats 

to what’s discussed in the previous paragraph. The figure does not show a flow of 

material moving externally across the low-temperature heat exchanger pipe. In 

engines of this type, the externally flowing fluid is a secondary loop containing 

cooler liquid H2O. In a real-world setting you can see the secondary H2O flow 

leaving the top of an hour-glass-shaped cooling tower as “steam.” Also missing 

from the sketch is the flow of combustion products; in a real-world setting this is 

seen leaving the engine via a smokestack. Two other flows missing from Fig. 1.2 

are the flows of fuel and air that enter a device known as the combustion 

chamber. In detailed drawings, you can see that the combustion chamber 

surrounds the high-temperature heat exchanger pipe. We ignore all these 

ancillary flows because our focus is the energy transformations that occur as H2O 

is cycled through the closed loop consisting of high- and low-temperature heat 

exchangers, pump, and turbine. 

For the control volumes that are components of an engine system (e.g., Fig. 

1.2), or are components of a refrigeration system (e.g., Fig. 1.3), we are going to 

write the First Law of Thermodynamics from the perspective of material 

contained within the control volume. Depending on the component, the material 
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within the control volume can experience heating/cooling, working, and energy 

addition/subtraction associated with mass transport. This is the egotistical point-

of-view discussed in Chapters 1 and 3. Previously we applied the egotistical point-

of-view to closed systems. Now the emphasis is on open devices known as control 

volumes. 

First Law of Thermodynamics: Control Volumes 

The First Law of Thermodynamics for a control volume must account for 

heating/cooling and working, seen previously for closed systems, plus the 

energetic effects of mass entering at an inlet (“i”) and mass leaving at an exit 

(“e”). For a SF control volume with one inlet and one exit, here is the difference 

form of the First Law of Thermodynamics  

, ,in out in out mass i mass eQ Q W W E E U− + − + − =   (kJ) 

which in rate form is 

, ,in out in out mass i mass e

dU
Q Q W W E E

dt
− + − + − =

 (kJ s-1) 

In the case of a SF control volume with one inlet and one exit, the fluid’s 

mass flow rate is constant through the device. For these we rewrite the previous 

equation to acknowledge that a single mass flow rate can be used to represent 

the device’s mass budget and we represent that flowrate without a subscript 

i em m m= = . (kg s-1) (5.2) 
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Also, for SF control volume with one inlet and one exit, the 
, ,mass i mass eE E−  

term can be formulated as shown in the following equation: 

( )in out in out i e i e i e

dU
Q Q W W m h h ke ke pe pe

dt
− + − +  − + − + − =

 (kJ s-1) 

All the open devices analyzed in this class operate in an energetic steady 

state. That means that internal energy contained within the device does not vary 

with time. The following is the rate form of the First Law of Thermodynamics for a 

steady-flow (SF) and energetically steady state (SS) control volume with one inlet 

and one exit: 

( ) 0in out in out i e i e i eQ Q W W m h h ke ke pe pe− + − +  − + − + − =  (kJ s-1) 

The previous equation is further modified. First, we acknowledge that mass 

flow rate, by definition, is constant through a SF control volume. Second, we 

divide the previous equation by the constant mass flow rate. The result is the 

intensive form of the First Law of Thermodynamics for a steady-state and steady-

flow (SSSF) control volume with one inlet and one exit 

0in out in out i e i e i eq q w w h h ke ke pe pe− + − + − + − + − =  (kJ kg-1) (5.3) 

In Eqn. 5.3, the heating/cooling and working terms are, by definition, the 

ratio of an energetic rate (e.g., inQ ) and the mass flow rate ( m ). Equations 5.4a – d 

define these ratios. 

in
in

Q
q

m
=  (kJ kg-1) (5.4a) 

out
out

Q
q

m
=  (kJ kg-1) (5.4b) 

in
in

W
w

m
=  (kJ kg-1) (5.4c) 

out
out

W
w

m
=  (kJ kg-1) (5.4d) 
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With the exception of wind turbines, we model SSSF control volumes with 

the assumption that the change of the working fluid’s kinetic energy ( i eke ke− ), 

and the change in working fluid’s potential energy ( i epe pe− ), are small 

(negligible) in comparison to the change of the working fluid’s specific enthalpy (

i eh h− ). In that case the rate form of the First Law of Thermodynamics is this: 

( ) 0in out in out i eQ Q W W m h h− + − +  − =  (kJ s-1) (5.5) 

The previous equation is further modified. First, since mass flow rate is 

constant through a SSSF control volume, we can divide Eqn. 5.5 by the constant 

mass flow rate. The result is the intensive form of the First Law of 

Thermodynamics for a SSSF device with one inlet and one exit. 

0in out in out i eq q w w h h− + − + − =  (kJ kg-1) (5.6) 

In example problems, you see how to choose between Eqn. 5.6 and the 

companion rate form (Eqn. 5.5). Typically, this comes down to seeing if the mass 

flow rate is specified or can be calculated. If the mass flow rate is available, then 

you will be able to apply the rate form (Eqn. 5.5). Additionally, Eqns. 5.4a – d 

often provide a bridge between the rate form of the First Law (Eqn. 5.5) and the 

intensive form of the First Law (Eqn. 5.6). 

Control Volumes with One Inlet and One Exit 

Here we continue to focus on devices (control volumes) with one inlet and 

one exit. First Law equations are developed for several open devices. All of these 

will be in intensive form and SSSF will be assumed.  

 Consistent with what was stated in the previous section, the First Law 

Equation for wind turbines has contributions resulting from the fluid’s kinetic 

energy change ( i eke ke− ). For a wind turbine the First Law of Thermodynamics is 
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0out i ew ke ke− + − = .  (5.7) 

After reconciling units (Table 2.1), and applying an identity ( 21

2
ke V= ), the First 

Law for a wind turbine is 

2 2

2 2

1 1 1
0

1000 2 2
out i e

kJ
w V V

kg m s−
 

− +  − = 
  .  (5.8) 

Eq. 5.8 says that a wind turbine transforms the kinetic energy of a moving fluid 

(air) to shaft work. 

In contrast to wind turbines, pipe flow is assumed to be workless and 

isobaric. Additionally, contributions to the control volume’s First Law budget 

coming from a change of the fluid’s kinetic energy or from a change of the fluid’s 

potential energy are typically assumed negligible.  

In instances where a pipe is uninsulated, and external to the pipe is 

surroundings at a larger temperature, the First Law says that heat transport adds 

energy to the control volume and therefore increases the specific enthalpy of the 

fluid at exit relative to inlet 

0in i eq h h+ − = .  (5.9) 

For pipes outputting heat, the First Law says that heat transport subtracts 

energy from the control volume and therefore decreases the specific enthalpy of 

the fluid at exit relative to inlet  

0out i eq h h− + − = .  (5.10) 

Flow through narrow pipes cannot be modeled as isobaric, and so 

Equations 5.9 and 5.10 are not valid for that application. Also, the time it takes for 

material to flow from inlet to exit of a narrow pipe is not long enough for 

appreciable heat transport to occur. Hence, a narrow pipe is modeled to operate 
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workless, as is also the case for a pipe with relatively larger crossection, and 

adiabatic. The throttle, pictured in Fig. 1.3, is this type of SSSF device and Eqn. 

5.11 is an appropriate form of the First Law. 

0i eh h− =   (5.11) 

Eqn. 5.11 says that the specific enthalpy of the fluid does not change from inlet to 

exit of a throttle. 

The compressor and turbine are components of many engine and 

refrigerator systems. Typically, compressors and turbines are operated 

adiabatically. This is true because these devices are either insulated or because 

fluid passes quickly through the device and thus heat transport is negligible. The 

First Law equation for an adiabatic compressor is 

0in i ew h h+ − = .  (5.12) 

and the First Law equation for an adiabatic turbine is 

0out i ew h h− + − = .  (5.13) 

The adiabatic compressor is a shaft work consuming device which increases 

the specific enthalpy of the fluid at exit relative to inlet, and the adiabatic turbine 

is a shaft work producing device which decreases the specific enthalpy of the 

working fluid at exit relative to inlet. 

Control Volume with Two Inlets and Two Exits 

Heat exchangers are a type of control volume with an inlet and exit, for a 

hot stream, and an inlet and exit for a cold stream. The low-temperature heat 

exchanger illustrated in Fig. 1.3 is an example, but this figure is incomplete. 

Let’s say that the refrigerator system in Fig. 1.3 is an air conditioner. 

Associated with the flow of refrigerant (R134A) there is a flow of hot air running 
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counter to the flow of the R134A. This tube-in-shell heat exchanger design is 

shown in Fig. 5.1. This device is insulated, and therefore from the perspective of 

the surroundings, this device is operated adiabatically. Furthermore, the device is 

workless, and is also operated SSSF. The rate form of the SSSF First Law for this 

device is 

( ) ( ) 0C i e H i eC H
m h h m h h − +  − =

.  (5.14) 

In Eqn. 5.14, the “C” subscript indicates the cold stream (refrigerant R134A in Fig. 

5.1) and the “H” subscript indicates the hot stream (Air in Fig. 5.1). In a homework 

problem you use Eqn. 5.14 to solve for the temperature of the air where it exits at 

the location labeled “H stream exit.” However, this is not the only way that heat 

exchangers are analyzed.  Another approach starts with knowledge of the two 

specific enthalpy changes (i.e., ( )i e C
h h−  and ( )i e H

h h− ) and one of the mass 

flows.  In that case, the second mass flow can be calculated for using Eqn. 5.14. 
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Figure 5.1 – A tube-in-shell heat exchanger with an inlet and exit for one material 

(R134A, the cold stream) and an inlet and exit for another material (Air, the hot 

stream). The streams are flowing counter to each other and do not mix. The 

dashed red line shows the control volume boundary implied by Eqn. 5.14.  
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Chapter 6 

Entropy 

You have seen that entropy is a thermodynamic property. That means that 

entropy is defined at states and that entropy change ( s ) can be evaluated and 

has relevance to thermodynamic calculations. You also know that a measurement 

of temperature, at a start state, plus measurements of pressure at a start state 

and an end state, can be used to calculate the temperature at the end of a 

process that’s isentropic ( s = 0). There are examples of this in your analysis of 

the Diesel and Brayton cycles. You also know how to evaluate the value of 

entropy at a prescribed state. You did that using measurements of temperature 

and pressure, and tabulated data, in instances where the phase description is 

either superheated H2O or superheated R134A. Similarly, you know how to use a 

measurement of either temperature or pressure, and a measurement of quality (

 ), to calculate the entropy of a liquid/gas mixture. In this chapter, we use these 

methods to develop what we can call the “economics” of energy utilization. 

Economics, Entropy, and Energy Efficiency 

Why do we say “economics” of energy utilization? When something is 

economical, we mean that there is little waste, and that is the context of this 

discussion of energy efficiency. This chapter summarizes the equations needed, 

and how they are used to design engines, refrigerators, heat pumps, turbines, 

compressors, and heat exchangers that are economical. Calculation of entropy at 

states and calculation of the state-to-state entropy change are key aspects of this 

energy use optimization.  
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First, we consider Sadi Carnot, a 19th century engineer who analyzed 

interactions of a high-temperature thermal energy reservoir, a low-temperature 

thermal energy reservoir, and a reversible system (a Carnot machine) placed 

between the reservoirs10. Carnot derived an equation that relates the 

temperatures of the reservoirs and the energy efficiency of the Carnot machine. 

In this context, energy efficiency is referring to the following three metrics. For 

the Carnot engine, the metric is the engine’s thermal efficiency; for the Carnot 

refrigerator, the metric is the Carnot refrigerator’s coefficient of performance, 

and for the Carnot heat pump, the metric is the Carnot heat pump’s coefficient of 

performance. 

Four aspects of the economics of energy utilization are illustrated in  

lecture material and in homework. These are summarized here: 1) We 

demonstrate that the throttling step of a vapor compression refrigeration cycle is 

inefficient and that removing the throttle and replacing it with a turbine increases 

the coefficient of performance of the vapor compression refrigeration cycle. 2) A 

low-efficiency energy use scenario is analyzed. This involves a system processed 

by electrical resistance heating. When the material is processed using a Carnot 

heat pump, we document significant gain in energy use efficiency. 3) A different 

type of energy efficiency is examined. These are the isentropic efficiencies of a 

compressor and turbine. We demonstrate that modern turbines and compressors 

operate reasonably close to the best-case (reversible) efficiency. 4) Shaft power 

generated by a design that taps a geothermal resource is analyzed. An entropy 

analysis is used to motivate a design change and the modified design is shown to 

generate more shaft power. 

 
10 J.F. Sanfort, Heat Engines, Doubleday, Garden City, New York, 1962 
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Engine Thermal Efficiency and Carnot’s Proof 

Carnot’s proof begins with a generic definition of an engine’s thermal 

efficiency (e.g., Eqn. 1.2). 

out in

in

W W

Q


−
=

  (6.1) 

It’s important to note that Eqn. 6.1 is valid for both reversible and irreversible 

engine cycles. 

Carnot asked how an engine’s thermal efficiency can be maximized. You 

know the answer: Insist that all engine steps are reversible. That means that the 

engine mechanics are frictionless, and that an expansion and a compression occur 

at a speed that is slow relative to the speed of sound. It also means that heat 

transport occurs with the heat receiver only slightly cooler than the heat source. 

Henceforth, we will refer to this idealized heat transport as “reversible heat 

transport.” 

Engineers and scientists that followed Carnot derived his proof by 

developing it in terms of a thermodynamic property called entropy. Entropy has 

three characteristics. First, a material’s entropy increases when it accepts heat 

reversibly. Second, a material’s entropy decreases when it outputs heat 

reversibly. These two characteristics are communicated mathematically in Eqn. 

6.2. 

dQ T dS=    (6.2) 

Eqn. 6.2 is a differential equation. It says that each small amount of heat 

that is reversibly input to a material, or reversibly output from a material, is equal 

to the absolute temperature of the material multiplied by the differential change 

of the material’s entropy. Since temperature in Eqn. 6.2 is absolute temperature, 
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a differential amount of reversible heat input ( dQ 0) increases a material’s 

entropy ( 0dS  ). Conversely, a differential amount of reversible heat output (

0dQ ) decreases a material’s entropy ( 0dS  ). 

The third characteristic of entropy is this: Irreversibilities only increase 

entropy. Because of this, Eqn. 6.2 is often written as an inequality ( dQ T dS  ). 

However, in the proof that follows, we only consider the equality. That’s because 

we will be analyzing cycles that are assumed to be reversible. 

The thermodynamic cycle we are now analyzing is the Carnot engine cycle. 

The steps of the cycle are shown in Fig. 6.1. In words, these are a reversible high-

temperature heat input (1-to-2), an isentropic expansion (2-to-3), a reversible 

low-temperature heat output (3-to-4), and an isentropic compression (4-to-1).  
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Figure 6.1 – The Carnot engine cycle in temperature versus entropy coordinates. 

In the 1-to-2 step, heat coming from a high-temperature thermal energy reservoir 

is input to the cycle reversibly. The 2-to-3 step is an isentropic expansion. In the 3-

to-4 step, heat going to a low-temperature thermal energy reservoir is output 

from the cycle reversibly. The 4-to-1 step is an isentropic compression.  
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Before going further with Carnot’s proof, we do a First Law analysis of the 

Carnot engine cycle (Fig. 6.1). For any engine cycle (reversible or irreversible), we 

know that a summation of heating/cooling and working nets to zero, and 

therefore, we can say 0in out in outQ Q W W− + − =  and that Eqn. 6.1 can be changed 

to Eqn. 6.3. 

in out

in

Q Q

Q


−
=

  (6.3) 

Rearranging, this becomes  

1 out

in

Q

Q
 = −

   (6.4) 

Now consider Fig. 6.1. Start in the upper-left corner, at the #1 state, and 

move clockwise following the cycle. Using Eqn. 6.2 and integrating11, the entropy 

changes are in Eqns. 6.5a – d. 

2 1
in

H

Q
S S

T
− =   (6.5a) 

3 2 0S S− =   (6.5b) 

4 3
out

L

Q
S S

T

−
− =   (6.5c) 

1 4 0S S− =   (6.5d) 

Now focus on Fig. 6.1 where it is obvious that the 1-to-2 line-segment 

length is equal to 3-to-4 line-segment length and that 
2 1S S− and 

4 3S S− differ by 

sign. It follows that addition of Eqns. 6.5a and 6.5c yields Eqn. 6.6. 

0 in out

H L

Q Q

T T
= −

  (6.6) 

Rearranging, this becomes  

 
11 To fully capture the essence of the proof, you should do these four integrations explicitly on paper. 
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out L

in H

Q T

Q T
=

  (6.7) 

and therefore, for the Carnot engine cycle, Eqn. 6.4 can be written 

1 L
rev

H

T

T
 = −

.  (6.8) 

Eqn. 6.8 is the culmination of Carnot’s proof for the Carnot engine cycle. 

At this point it is important to acknowledge three things. First, Eqn. 6.8 is 

for the best-case (reversible) engine known as a Carnot engine, and hence, Eqn. 

6.8 has the “rev” subscript not seen in the generic definition of the engine 

thermal efficiency (Eqn. 6.1). Second, the thermal efficiency of the Carnot engine 

only depends on the absolute temperatures of the thermal energy reservoirs. 

Third, in most Carnot-type homework problems, the cooler of the two thermal 

energy reservoirs is at the temperature of the surroundings and the latter is TL ≈ 

300 K. 

Figure 6.2a shows Eqn. 6.8 plotted versus TH with TL set at 300 K. The graph 

demonstrates that a high-temperature thermal energy reservoir at TH = 600 K 

makes the thermal efficiency of the Carnot engine equal to rev = 0.5.  As in our 

investigations of the Otto and Diesel cycles, a thermal efficiency equal to 0.5 

implies that 0.5 kilojoule work is output for every 1 kilojoule of heat input. Also, at 

larger values of TH the rev increases sub-linearly, meaning that increasingly 

hotter thermal energy reservoirs do not proportionately increase a Carnot 

engine’s thermal efficiency. For actual engines there are also practical limitations. 

For example, the melting temperature of aluminum is approximately 900 K. 
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Figure 6.2 – a) Carnot engine thermal efficiency (Eqn. 6.8) for an assumed LT =

300 K. b) Carnot heat pump coefficient of performance (Eqn. 6.17) for an assumed 

LT =300 K. 
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Refrigerator Coefficient of Performance and Carnot’s Proof 

A refrigerator is a device that removes heat from a low-temperature zone. 

Logically then, a refrigerator’s energy efficiency (aka, a refrigerator’s coefficient of 

performance (COPR)) is defined as the ratio of the amount of heat removed from 

the cold zone, divided by the amount of work required to drive that heat 

transport. 

Based on the discussion in the previous paragraph, and Fig. 1.3, a 

refrigerator’s COPR is  

in
R

in out

Q
COP

W W
=

− .  (6.9) 

When Eqn. 6.9 is combined with the fact that the summation of heating/cooling 

and working nets to zero for a cycle, and therefore 0in out in outQ Q W W− + − = , the 

COPR becomes 

1

1
R

out

in

COP
Q

Q

=

−

.  (6.10) 

For the Carnot refrigeration cycle, the heat ratio in the denominator of Eqn. 

6.10 is equal to TH / TL. To establish this, you do an analysis of the Carnot 

refrigeration cycle while examining Fig. 6.3. That means you start at the #1 state 

(Fig. 6.3) and proceed counterclockwise through the #2, #3, #4, and then back to 

the #1 state. The entropy changes for the Carnot refrigeration cycle are in Eqns. 

6.11a – d. 
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2 1 0S S− =   (6.11a) 

3 2
in

L

Q
S S

T
− =   (6.11b) 

4 3 0S S− =   (6.11c) 

1 4
out

H

Q
S S

T

−
− =   (6.11d) 

Now focus on Fig. 6.3 where it is obvious that the 2-to-3 line-segment 

length is equal to 4-to-1 line-segment length and that 
3 2S S− and 

1 4S S− differ by 

sign. It follows that addition of Eqns. 6.11b and 6.11d yields Eqn. 6.12. 

0 in out

L H

Q Q

T T
= −

  (6.12) 

Rearranging, this becomes  

out H

in L

Q T

Q T
=

  (6.13) 

and therefore, for the Carnot refrigeration cycle, Eqn. 6.10 can be written 

,

1

1
R rev

H

L

COP
T

T

=

−

  (6.14) 

Eqn. 6.8 is the culmination of Carnot’s proof for the Carnot refrigeration cycle. 

  



78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 – The Carnot refrigeration cycle in temperature versus entropy 

coordinates. The 1-to-2 step is an isentropic expansion. In the 2-to-3 step, heat 

coming from a low-temperature thermal energy reservoir is input to the cycle 

reversibly. The 3-to-4 step is an isentropic compression. In the 4-to-1 step, heat 

going to a high-temperature thermal energy reservoir is output from the cycle 

reversibly. 
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Heat Pump Coefficient of Performance and Carnot’s Proof 

Practically speaking, heat pumps absorb thermal energy that’s in the 

ambient surroundings and transport that heat to a high-temperature zone at TH. 

From that perspective, we define a heat pump’s coefficient of performance 

(COPHP) as the ratio of the amount of heat deposited in a high-temperature zone 

divided by the amount of work required to drive that heat transport. 

out
HP

in out

Q
COP

W W
=

−   (6.15) 

When Eqn. 6.15 is combined with the fact that the summation of heating/cooling 

and working nets to zero for a cycle, and therefore 0in out in outQ Q W W− + − = , the 

COPHP becomes 

1

1
HP

in

out

COP
Q

Q

=

−

  (6.16) 

For the Carnot heat pump cycle, the heat ratio in the denominator of Eqn. 

6.16 is equal to TL / TH. This was established in the previous section. So, for the 

Carnot heat pump cycle, the coefficient of performance is 

,

1

1
HP rev

L

H

COP
T

T

=

−

  (6.17) 

Figure 6.2b shows Eqn. 6.17 plotted versus TH. Again, TL is set at 300 K. The 

figure shows that the COPHP,rev is a steeply decreasing function of TH. At large TH 

you see an asymptotic value at COPHP,rev = 1. The value COPHP,rev = 1 is where the 

amount of heat transferred to the high-temperature zone is equal to the cycle’s 

work input ( in outW W− ). The graph shows this asymptote at TH ≈ 900 K. Because 

actual heat pumps are not reversible, they reach COPHP = 1 at TH ≈ 400 K. When 
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this limit is reached, i.e., when work input to an actual heat pump is comparable 

to the heat that’s transferred to the high-temperature zone, there is nothing to be 

gained by using the heat pump compared to using electrical resistance elements 

for space heating. 

Isentropic Efficiencies of Turbines and Compressors12 

The First Law equations for an adiabatic compressor and an adiabatic 

turbine are equations 5.12 and 5.13, respectively. Figure 6.4a shows how these 

devices are built into a Brayton Cycle engine. The working fluid in this design is air.  

Because neither of these devices is perfectly reversible, we expect irreversibilities 

to do two things: 1) cause the devices’ performance to be less than isentropic, 

and 2) cause entropy production to occur as the fluid moves from inlet to exit. Fig. 

6.4b illustrates this inlet-to-exit entropy increase for an actual compressor and an 

actual turbine that are components of a Brayton Cycle engine. 

  

 
12 W.C. Reynolds and H.C. Perkins, Engineering thermodynamics, Second Edition, New York: McGraw-Hill, 1977, 
their Section 9-3 
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Figure 6.4 – a) The Brayton cycle. The 1-to-2 step is an adiabatic compression, the 

2-to-3 step is an isobaric high-temperature heat exchange, the 3-to-4 step is an 

adiabatic expansion, and the 4-to-1 step is an isobaric low-temperature heat 

exchange. b) The Brayton cycle in temperature versus specific entropy 

coordinates.  Typically, air is the working fluid in the Brayton cycle. 
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For any adiabatic compressor one can calculate, based on pressure 

measurements made at inlet and exit, and temperature measurements made at 

inlet and exit, the compressor’s isentropic efficiency (
C ) 

( )

( )

i e s
C

i e a

h h

h h


−
=

−   (6.18) 

Similarly, for any adiabatic turbine one can calculate, again based on 

measurements, the turbine’s isentropic efficiency (
T ) 

( )

( )

i e a
T

i e s

h h

h h


−
=

−   (6.19) 

In a homework problem, we specify these efficiencies, use them to calculate 

actual specific enthalpy differences (i.e., ( )i e ah h− ), and based on these we 

calculate the work input to an adiabatic (but not reversible and therefore not 

isentropic) compressor and the work output of an adiabatic (but not reversible 

and therefore not isentropic) turbine. The basis for these work terms is the First 

Law equations (Eqns. 5.12 and 5.13). 

Second Law of Thermodynamics  

We saw that Eqn. 6.8 is for the best-case (reversible) engine known as a 

Carnot engine. Additionally, Eqns. 6.14 and 6.17 are for the best-case (reversible) 

Carnot refrigerator and the best-case (reversible) Carnot heat pump, respectively. 

These results are now summarized: 

(i) No cyclic engine operating between two thermal energy reservoirs can 

be more efficient than Carnot’s prediction for a reversible engine (Eqn. 6.8). 
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(ii) No cyclic refrigerator operating between two thermal energy reservoirs 

can be more efficient than Carnot’s prediction for a reversible refrigerator (Eqn. 

6.14). 

(iii) No cyclic heat pump operating between two thermal energy reservoirs 

can be more efficient than Carnot’s prediction for a reversible heat pump (Eqn. 

6.17). 

Any claim that violates (i), (ii), or (iii) is false because it violates Carnot’s 

proofs. Such false claims are occasionally made by misinformed (or dishonest) 

engineers and scientists. These are said to violate the Second Law of 

Thermodynamics. In homework, you will see how to apply (i), (ii), and (iii) and 

discount false claims made about engines, refrigerators, and heat pumps. 
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Chapters 1, 2, and 3 True / False Problems 

Answer in the left margin with either True or False 

1) The refrigerator discussed in Chapter 1 transfers heat from a cold zone to a hot 

zone. 

 

2) The thermal efficiency of an engine is defined as the ratio of work output 

divided by the _net_ heat input. 

 

3) A system is cooled. The start state temperature and end state temperature are 

both measured with precision  0.01 oC. The start state temperature is T1 = 130.00 

oC and the end state temperature T2 = 30.00 oC. The temperature change can be 

correctly reported as T = 100.00 K. 

 

4) A temperature increase of 1 K is equivalent to a temperature increase of 1 oC. 

 

5) During heating, the temperature of a system increases 10.00 oC and that 

increase is measured with a precision of  0.01 oC.  The temperature increase is 

equivalent to a temperature increase of 283.15 K. 

 

6) The temperature of an unknown amount of water ( c = 4.18 kJ kg-1 K-1) is 

decreased 10 oC.  The change of the water’s specific internal energy is -41.8 kJ kg-

1. 
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Chapters 1, 2, and 3 Multiple Choice Problems 

Circle the correct answer 

7) In thermodynamics, internal energy is defined as  

A. Energy stored in a charged battery 

B. Energy stored in a compressed spring 

C. Energy associated with molecular and atomic motions 

 

8) Which one of these statements is true? 

A. The engine discussed in Chapter 1 has a loop which cycles R134A. 

B. The refrigerator discussed in Chapter 1 is an internal combustion engine. 

C. The engine discussed in Chapter 1 has these four steps: Compression, heat 

input occurring at a relatively high temperature, expansion, heat output occurring 

at a relatively cold temperature. 

D. The engine discussed in Chapter 1 accepts heat from a cold zone. 
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9) Which one of these statements is true? 

A. Work is not a path function. 

B. Different values of work occur for different process paths that connect the 

same two states. 

C. Thermodynamic properties are path functions. 

 

10) Which one of these statements is true? 

A. Reversible processes are dissipative processes. 

B. Closed systems with an insulating boundary can gain or lose energy by heat 

transport. 

C. If there is no temperature difference between a system and its surroundings, 

heat transport can occur. 

D. Stationary systems can move horizontally. 

 

11) Which one of these statements is true? 

A. As a rock falls from rest, KE is less than zero. 

B. As a rock falls from rest, PE is greater than zero. 

C. As a rock falls from rest, 0 = KE + PE 
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Chapters 1, 2, and 3 True / False Problems 

Answer in the left margin with True or False 

12) The refrigerator discussed in Chapter 1 transfers heat from a cold zone to a 

hot zone. 

 

13) The temperature of an unknown amount of water ( c = 4.18 kJ kg-1 K-1) is 

increased 10 oC.  The change of the water’s specific internal energy is 41.8 kJ kg-1. 

 

14) It is impossible to transfer heat from a cold zone to a hot zone. 

 

15) Systems which transfer heat from a cold zone to a hot zone require work 

input. 

 

16) A power plant is producing shaft power at a rate W = 160 kW. This can be 

expressed as W = 160x10-3 W. 

 

17) A weight 850 N is equivalent to 0.850 kN. 

 

18) The pressure 78 kPa is equivalent to 0.078 Pa. 
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Chapter 4 Problems 

1) Use calculus and progress, step by step, from Eqn. 4.10a to 4.10d. 

 

2) A different s equation can be obtained by starting with Eqn. 4.10a and by 

modifying Eqn. 4.10b with the following definitions of specific enthalpy and the 

specific enthalpy differential: 

h u Pv= +  

dh du vdP Pdv= + +  

Combine the previous equation with Eqn. 4.10b. Assume the material is air and 

state that assumption when needed in this problem. Use calculus to progress, 

step by step, to the following relationship: 

( )2

1

2

1

ln

T

p

T

c T P
s dT R

T P

   
 =  −    

  


 

 

Note: In all quantitative problems with air, you must account for the 

temperature dependence of the appropriate specific heat capacity. 

Circle the correct answer 

3) At 420 K, air’s cv specific heat capacity is 

A) 1.013 kJ kg-1 K-1 

B) 0.726 kJ kg-1 K-1 

C) 0.729 kJ kg-1 K-1 

D) 1.020 kJ kg-1 K-1 
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4) The temperature of air is increased from 300 to 900 K. Air’s specific internal 

energy change is  

A) 461 kJ 

B)  461 kJ kg-1 

C) 633 kJ 

D) 633 kJ kg-1 

 

5) At 820 K, air’s cv specific heat capacity is 

A) 1.099 kJ kg-1 K-1 

B) 0.812 kJ kg-1 K-1 

C) 0.817 kJ kg-1 K-1 

D) 1.122 kJ kg-1 K-1 

 

6) The temperature of air is increased from 300 to 600 K. Air’s specific internal 

energy change is  

A) 221 kJ 

B)  221 kJ kg-1 

C) 307 kJ 

D) 307 kJ kg-1 
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Chapter 5 Problems 

Answer in the left margin with True or False 

1) Given an operating SSSF device, the time rate of change of the amount of 

material within the control volume is zero. 

 

2) Given an operating SSSF steam turbine, H2O flows through the control volume, 

and the H2O’s specific enthalpy does not change from inlet to exit. 

 

3) Given an operating SSSF air compressor, air flows through the control volume, 

and the air’s specific enthalpy does not change from inlet to exit. 

 

4) Within an operating heat exchanger two fluids exchange heat without mixing. 

 

5) A heat exchanger is a SSSF device with two inlets and two exits. 

 

6) A wind turbine can be analyzed as a SSSF device. 

 

7) Given an operating SSSF device with one inlet and one exit, the state of the 

fluid at the exit does not vary with time. 

 

8) Given an operating SSSF device, the time rate of change of internal energy 

within the control volume is zero. 
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9) Given an operating SSSF device with one inlet and one exit, the rate of mass 

entering the control volume is equal to the rate of mass leaving the control 

volume. 

 

Chapter 5 Problems 

10) A wind farm has a steady wind speed of 10 m s-1.  After passing through a 

wind turbine, the wind speed decreases to 5 m s-1.  The turbine has a 25-meter-

diameter blade.  The air density is 0.89 kilogram per cubic meter. 

a) Calculate the intensive work output of the wind turbine. 

b) Calculate the mass flow rate through the wind turbine. 

c) Calculate the shaft power output of the wind turbine. 
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Chapter 6 Problems 

1) Here is an inventor’s claim: A proposed engine will extract heat from a high-

temperature thermal energy reservoir at 500 K, dump 50 kJ of heat into a low-

temperature thermal energy reservoir at 300 K, and produce 50 kJ of work. These 

values of heating/cooling and working are for one cycle. Is the inventor’s claim 

plausible? That is, does the inventor’s claim violate the Second Law of 

Thermodynamics (answer = the claim is not plausible), or does it not violate the 

Second Law of Thermodynamics (answer = the claim is plausible). 

 

2) Here is an inventor’s claim: A proposed heat pump will extract 100 kJ heat from 

a low-temperature thermal energy reservoir at 200 K, input heat to a high-

temperature thermal energy reservoir at 300 K and consume 75 kJ of work input. 

These values of heating/cooling and working are for one cycle. Is the inventor’s 

claim plausible? That is, does the inventor’s claim violate the Second Law of 

Thermodynamics (answer => the claim is not plausible), or does it not violate the 

Second Law of Thermodynamics (answer => the claim is plausible). 

 

3) Calculate and report the best-case (reversible) engine thermal efficiency for 

this scenario: TH = 800 K and TL = 300 K.   

 

4) Calculate and report the best-case (reversible) engine thermal efficiency for 

this scenario: TH = 350 K and TL = 300 K.   
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5) List the four steps of the Carnot engine cycle. Inform what is constant during 

each of the steps. Follow the state numbering in Fig. 6.1. 

 

6) As in question #5, list the four steps of the Carnot refrigeration cycle. Inform 

what is constant during each of the steps. Follow the state numbering in Fig. 6.3. 

 

Answer in the left margin with either True or False 

7) For the Carnot engine cycle, this is a valid equation: 

in H

out L

Q T

Q T
=  

 

8) For the Carnot refrigeration cycle, this is a valid equation: 

in L

out H

Q T

Q T
=  

 

Circle the correct answer 

9) For the Carnot engine cycle shown in Fig. 6.1, why is 3 2S S−  equal to zero? 

A) Because this step is adiabatic and reversible 

B) Because this step is adiabatic 

C) Because this step is reversible 
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10) For the Carnot engine cycle shown in Fig. 6.1, which step is the heat output 

step? 

A) 1-to-2 

B) 2-to-3 

C) 3-to-4 

D) 4-to-1 

 

11) For the Carnot refrigeration cycle shown in Fig. 6.3, which step is the heat 

input step? 

A) 1-to-2 

B) 2-to-3 

C) 3-to-4 

D) 4-to-1 

 

12) For the Brayton cycle shown in Fig. 6.4, which step is the work input step? 

A) 1-to-2a 

B) 2a-to-3 

C) 3-to-4a 

D) 4a-to-1 

 

 

 


